Application of Landsat satellite imagery to monitor land‐cover changes at the Athabasca Oil Sands, Alberta, Canada

A major advantage of satellite remote sensing is that the imagery acquired provides a synoptic view of the landscape. Thus, repeat coverage by the satellite on a regular basis permits the detection of changes in land-cover over time. This study demonstrates the application of remote sensing technology to the monitoring of mining activities at the Athabasca Oil Sands region of Alberta, Canada. First, we describe the techniques used to match a time sequence of Landsat imagery, both spatially and spectrally, to ensure that the spectral changes through time are due to land-cover variations. A series of spectral trajectories were then extracted to assess changes in land-cover through time. Secondly, a land-cover classification was produced from the baseline 1984 imagery and, using historic and future mine extents, the classification was analyzed to determine the proportion of each land-cover type affected through development. Results of the analysis indicate that since 1984 there has been a larger reduction in mixedwood dense and broadleaf vegetation classes than mixedwood sparse or dense conifer stands in the area. Based on the delineations of mine-site activity, the area of woodland and wetland habitat subject to development has increased from approximately 2,520 hectare (ha) in 1984 to 32,930 ha in 2005. Le recours a l'imagerie satellite Landsat pour la surveillance des changements de la couverture terrestre dans la region des sables bitumineux de l'Athabasca, Alberta, Canada Un des grands avantages de l'imagerie satellitaire est que les images obtenues fournissent une vue synoptique du paysage. Une couverture repetee du territoire par le satellite, a intervalles reguliers, permet de detecter des changements dans la couverture terrestre . Cet article demontre l'utilite de la teledetection pour la surveillance des activites d'extraction miniere dans la region des sables bitumineux de l'Athabasca, Alberta, Canada. Une description des techniques qui peuvent etre employees pour faire correspondre une serie temporelle d'images Landsat, en mode spatial et spectral, est d'abord presentee afin de s'assurer que les changements spectraux au fil du temps s'expliquent par les variations de la couverture terrestre. On en degage des trajectoires spectrales servant aevaluer ces changements. Ensuite, une classification de la couverture terrestre est realisee a partir des images obtenues des donnees de base de 1984. Une analyse de la classification sur la base de l'ampleur historique et a venir des exploitations minieres permet de determiner dans quelle proportion chaque type de couverture terrestre a ete touche par le developpement. Ces resultats indiquent que depuis 1984 il y a eu une plus grande reduction des classes de vegetation de foret mixte dense et feuillue que les peuplements forestiers mixtes clairsemes ou de coniferes denses dans le secteur. Selon les delimitations des sites miniers, les habitats en milieu boise et humide soumis au developpement d'une superficie d'environ 2520 ha en 1984 ont atteint 32 930 ha en 2005.

[1]  Warren B. Cohen,et al.  Trajectory-based change detection for automated characterization of forest disturbance dynamics , 2007 .

[2]  Michael A. Wulder,et al.  Validation of a large area land cover product using purpose-acquired airborne video , 2007 .

[3]  Tian Han,et al.  An Efficient Protocol to Process Landsat Images for Change Detection With Tasselled Cap Transformation , 2007, IEEE Geoscience and Remote Sensing Letters.

[4]  R. Lunetta,et al.  Land-cover change detection using multi-temporal MODIS NDVI data , 2006 .

[5]  Conghe Song,et al.  Radiometric correction of multi-temporal Landsat data for characterization of early successional forest patterns in western Oregon , 2006 .

[6]  Nicholas C. Coops,et al.  Estimating the probability of mountain pine beetle red-attack damage , 2006 .

[7]  Sean P. Healey,et al.  Application of two regression-based methods to estimate the effects of partial harvest on forest structure using Landsat data , 2006 .

[8]  Michael A. Wulder,et al.  An accuracy assessment framework for large‐area land cover classification products derived from medium‐resolution satellite data , 2006 .

[9]  José A. Sobrino,et al.  Radiometric correction effects in Landsat multi‐date/multi‐sensor change detection studies , 2006 .

[10]  Xuexia Chen,et al.  A simple and effective radiometric correction method to improve landscape change detection across sensors and across time , 2005 .

[11]  Jan Czarnecki,et al.  On the nature of Athabasca Oil Sands. , 2005, Advances in colloid and interface science.

[12]  Rasim Latifovic,et al.  Assessing land cover change resulting from large surface mining development , 2005 .

[13]  Michael A. Wulder,et al.  Sensitivity of hyperclustering and labelling land cover classes to Landsat image acquisition date , 2004 .

[14]  Dengsheng Lu,et al.  Relationships between forest stand parameters and Landsat TM spectral responses in the Brazilian Amazon Basin , 2004 .

[15]  M. Canty,et al.  Automatic radiometric normalization of multitemporal satellite imagery , 2004 .

[16]  W. Cohen,et al.  Landsat's Role in Ecological Applications of Remote Sensing , 2004 .

[17]  N. Coops,et al.  High Spatial Resolution Remotely Sensed Data for Ecosystem Characterization , 2004 .

[18]  J. Rogan,et al.  Remote sensing for mapping and monitoring land-cover and land-use change—an introduction , 2004 .

[19]  Pol Coppin,et al.  Review ArticleDigital change detection methods in ecosystem monitoring: a review , 2004 .

[20]  David M. Johnson,et al.  Impacts of imagery temporal frequency on land-cover change detection monitoring , 2004 .

[21]  G. Foody Geographical weighting as a further refinement to regression modelling: An example focused on the NDVI–rainfall relationship , 2003 .

[22]  Ronald J. Hall,et al.  Operational mapping of the land cover of the forested area of Canada with Landsat data: EOSD land cover program , 2003 .

[23]  L. Kotlyar,et al.  Athabasca oil sands: effect of organic coated solids on bitumen recovery and quality , 2003 .

[24]  J. Kerr,et al.  From space to species: ecological applications for remote sensing , 2003 .

[25]  M. Fladeland,et al.  Remote sensing for biodiversity science and conservation , 2003 .

[26]  Michael A. Wulder,et al.  Structural change detection in a disturbed conifer forest using a geometric optical reflectance model in multiple-forward mode , 2003, IEEE Trans. Geosci. Remote. Sens..

[27]  B. Xu,et al.  Remote Sensing of Forests Over Time , 2003 .

[28]  Michael A. Wulder,et al.  Remote sensing methods in medium spatial resolution satellite data land cover classification of large areas , 2002 .

[29]  J. Townshend,et al.  Impact of sensor's point spread function on land cover characterization: Assessment and deconvolution , 2002 .

[30]  C. Woodcock,et al.  Monitoring land-use change in the Pearl River Delta using Landsat TM , 2002 .

[31]  W. Cohen,et al.  Modelling forest cover attributes as continuous variables in a regional context with Thematic Mapper data , 2001 .

[32]  J. Cihlar Land cover mapping of large areas from satellites: Status and research priorities , 2000 .

[33]  K. Hibbard,et al.  A Global Terrestrial Monitoring Network Integrating Tower Fluxes, Flask Sampling, Ecosystem Modeling and EOS Satellite Data , 1999 .

[34]  Knut Conradsen,et al.  Multivariate Alteration Detection (MAD) and MAF Postprocessing in Multispectral, Bitemporal Image Data: New Approaches to Change Detection Studies , 1998 .

[35]  K. Price,et al.  Spectral retrogression and insect damage in lodgepole pine successional forests , 1998 .

[36]  Joel B. Smith Setting priorities for adapting to climate change , 1997 .

[37]  S. Ekstrand,et al.  Landsat TM-based forest damage assessment : correction for topographic effects , 1996 .

[38]  M. Bauer,et al.  Digital change detection in forest ecosystems with remote sensing imagery , 1996 .

[39]  Pol Coppin,et al.  Change Detection in Forest Ecosystems with Remote Sensing Digital Imagery , 1996 .

[40]  P. Vitousek Beyond Global Warming: Ecology and Global Change , 1994 .

[41]  William Salas,et al.  Physical and human dimensions of deforestation in Amazonia , 1994 .

[42]  S. Goetz,et al.  Radiometric rectification - Toward a common radiometric response among multidate, multisensor images , 1991 .

[43]  William J. Volchok,et al.  Radiometric scene normalization using pseudoinvariant features , 1988 .

[44]  J. L. Barker,et al.  Landsat MSS and TM post-calibration dynamic ranges , 1986 .

[45]  R. Kauth,et al.  Investigations of vegetation and soils information contained in LANDSAT Thematic Mapper and Multispectral Scanner data , 1984 .

[46]  Eric P. Crist,et al.  Comparisons of the dimensionality and features of simulated Landsat-4 MSS and TM data , 1984 .

[47]  M. Kirby,et al.  Ecological habitat mapping of the AOSERP study area: Phase I , 1978 .

[48]  R. Kauth,et al.  The tasselled cap - A graphic description of the spectral-temporal development of agricultural crops as seen by Landsat , 1976 .

[49]  J. A. Schell,et al.  Monitoring vegetation systems in the great plains with ERTS , 1973 .