Local sparsity and recovery of fusion frames structured signals

The problem of recovering signals of high complexity from low quality sensing devices is analyzed via a combination of tools from signal processing and harmonic analysis. By using the rich structure offered by the recent development in fusion frames, we introduce a compressed sensing framework in which we split the dense information into sub-channel or local pieces and then fuse the local estimations. Each piece of information is measured by potentially low quality sensors, modeled by linear matrices and recovered via compressed sensing -- when necessary. Finally, by a fusion process within the fusion frames, we are able to recover accurately the original signal. Using our new method, we show, and illustrate on simple numerical examples, that it is possible, and sometimes necessary, to split a signal via local projections and / or filtering for accurate, stable, and robust estimation. In particular, we show that by increasing the size of the fusion frame, a certain robustness to noise can also be achieved. While the computational complexity remains relatively low, we achieve stronger recovery performance compared to usual single-device compressed sensing systems.

[1]  Massimo Fornasier,et al.  Theoretical Foundations and Numerical Methods for Sparse Recovery , 2010, Radon Series on Computational and Applied Mathematics.

[2]  Shidong Li,et al.  Non-orthogonal Fusion Frames and the Sparsity of Fusion Frame Operators , 2010, 1012.1496.

[3]  Pierre Vandergheynst,et al.  Compressed Sensing and Redundant Dictionaries , 2007, IEEE Transactions on Information Theory.

[4]  W. Brown Synthetic Aperture Radar , 1967, IEEE Transactions on Aerospace and Electronic Systems.

[5]  Richard G. Baraniuk,et al.  Compressive Sensing , 2008, Computer Vision, A Reference Guide.

[6]  Jackie Ma Generalized sampling reconstruction from Fourier measurements using compactly supported shearlets , 2014 .

[7]  Stephen P. Boyd,et al.  Graph Implementations for Nonsmooth Convex Programs , 2008, Recent Advances in Learning and Control.

[8]  Yulong Liu,et al.  Performance analysis of ℓ1-synthesis with coherent frames , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[9]  Ben Adcock,et al.  BREAKING THE COHERENCE BARRIER: A NEW THEORY FOR COMPRESSED SENSING , 2013, Forum of Mathematics, Sigma.

[10]  S. Foucart,et al.  Hard thresholding pursuit algorithms: Number of iterations ☆ , 2016 .

[11]  P. Casazza,et al.  Frames of subspaces , 2003, math/0311384.

[12]  P. Boesiger,et al.  SENSE: Sensitivity encoding for fast MRI , 1999, Magnetic resonance in medicine.

[13]  Riccardo Lanari,et al.  Synthetic Aperture Radar Processing , 1999 .

[14]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[15]  R.G. Baraniuk,et al.  Distributed Compressed Sensing of Jointly Sparse Signals , 2005, Conference Record of the Thirty-Ninth Asilomar Conference onSignals, Systems and Computers, 2005..

[16]  Simon Foucart,et al.  Hard Thresholding Pursuit: An Algorithm for Compressive Sensing , 2011, SIAM J. Numer. Anal..

[17]  Jean-Luc Bouchot,et al.  A Generalized Class of Hard Thresholding Algorithms for Sparse Signal Recovery , 2014 .

[18]  H. Rauhut,et al.  Atoms of All Channels, Unite! Average Case Analysis of Multi-Channel Sparse Recovery Using Greedy Algorithms , 2008 .

[19]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[20]  Otmar Scherzer,et al.  Handbook of Mathematical Methods in Imaging , 2015, Handbook of Mathematical Methods in Imaging.

[21]  H. Rauhut Compressive Sensing and Structured Random Matrices , 2009 .

[22]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[23]  Yonina C. Eldar,et al.  Average Case Analysis of Multichannel Sparse Recovery Using Convex Relaxation , 2009, IEEE Transactions on Information Theory.

[24]  M. Rudelson,et al.  The smallest singular value of a random rectangular matrix , 2008, 0802.3956.

[25]  Zizhong Chen,et al.  Condition Numbers of Gaussian Random Matrices , 2005, SIAM J. Matrix Anal. Appl..

[26]  Yulong Liu,et al.  Compressed Sensing With General Frames via Optimal-Dual-Based $\ell _{1}$-Analysis , 2012, IEEE Transactions on Information Theory.

[27]  Holger Rauhut,et al.  A Mathematical Introduction to Compressive Sensing , 2013, Applied and Numerical Harmonic Analysis.

[28]  N. Hamano,et al.  Digital processing of synthetic aperture radar data , 1984 .

[29]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[30]  Shidong Li,et al.  Fusion frames and distributed sparsity , 2018 .

[31]  Massimo Fornasier,et al.  Compressive Sensing , 2015, Handbook of Mathematical Methods in Imaging.

[32]  Katya Scheinberg,et al.  On partial sparse recovery , 2013, ArXiv.

[33]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[34]  P. Casazza,et al.  Fusion frames and distributed processing , 2006, math/0605374.

[35]  Holger Rauhut,et al.  Compressive Sensing with structured random matrices , 2012 .

[36]  Gitta Kutyniok,et al.  Sparse Recovery From Combined Fusion Frame Measurements , 2009, IEEE Transactions on Information Theory.

[37]  Ben Adcock,et al.  Compressed Sensing and Parallel Acquisition , 2016, IEEE Transactions on Information Theory.

[38]  Tong Zhang,et al.  Sparse Recovery With Orthogonal Matching Pursuit Under RIP , 2010, IEEE Transactions on Information Theory.

[39]  Pierre Weiss,et al.  Variable Density Sampling with Continuous Trajectories , 2014, SIAM J. Imaging Sci..

[40]  Holger Rauhut,et al.  Uniform recovery of fusion frame structured sparse signals , 2014, ArXiv.

[41]  Pierre Weiss,et al.  Compressed sensing with structured sparsity and structured acquisition , 2015, Applied and Computational Harmonic Analysis.