On Measuring Non-recursive Trade-Offs

We investigate the phenomenon of non-recursive trade-offs between descriptional systems in an abstract fashion. We aim at categorizing non-recursive trade-offs by bounds on their growth rate, and show how to deduce such bounds in general. We also identify criteria which, in the spirit of abstract language theory, allow us to deduce non-recursive tradeoffs from effective closure properties of language families on the one hand, and differences in the decidability status of basic decision problems on the other. We develop a qualitative classification of non- recursive trade-offs in order to obtain a better understanding of this very fundamental behaviour of descriptional systems.

[1]  Grzegorz Rozenberg,et al.  The mathematical theory of L systems , 1980 .

[2]  Bettina Sunckel On the descriptional complexity of metalinear cd grammar systems , 2004, Int. J. Found. Comput. Sci..

[3]  Dennis F. Cudia The degree hierarchy of undecidable problems of formal grammars , 1970, STOC.

[4]  L. H. Haines On free monoids partially ordered by embedding , 1969 .

[5]  A. R. Meyer,et al.  Economy of Description by Automata, Grammars, and Formal Systems , 1971, SWAT.

[6]  Juris Hartmanis,et al.  On Gödel Speed-Up and Succinctness of Language Representations , 1983, Theor. Comput. Sci..

[7]  Martin Kutrib The phenomenon of non-recursive trade-offs , 2004, Int. J. Found. Comput. Sci..

[8]  M. W. Shields An Introduction to Automata Theory , 1988 .

[9]  Erik Meineche Schmidt,et al.  Succinctness of Descriptions of Unambiguous Context-Free Languages , 1977, SIAM J. Comput..

[10]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[11]  Leslie G. Valiant,et al.  Regularity and Related Problems for Deterministic Pushdown Automata , 1975, JACM.

[12]  Juris Hartmanis On the Succinctness of Different Representations of Languages , 1980, SIAM J. Comput..

[13]  Krzysztof Lorys,et al.  On Growing Context-Sensitive Languages , 1992, ICALP.

[14]  Andreas Malcher Beschreibungskomplexität von Zellularautomaten , 2004 .

[15]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[16]  David Maier,et al.  Review of "Introduction to automata theory, languages and computation" by John E. Hopcroft and Jeffrey D. Ullman. Addison-Wesley 1979. , 1980, SIGA.

[17]  Martin Kutrib On the descriptional power of heads, counters, and pebbles , 2005, Theor. Comput. Sci..

[18]  Christos A. Kapoutsis From k + 1 to k heads the descriptive trade-off is non-recursive , 2004, DCFS.

[19]  Alfred V. Aho Indexed Grammars-An Extension of Context Free Grammars , 1967, SWAT.

[20]  Andreas Malcher Descriptional Complexity of Cellular Automata and Decidability Questions , 2001, DCFS.

[21]  Andreas Malcher,et al.  Descriptional Complexity of Machines with Limited Resources , 2002, J. Univers. Comput. Sci..

[22]  Christian Herzog Pushdown Automata with Bounded Nondeterminism and Bounded Ambiguity , 1997, Theor. Comput. Sci..

[23]  Andreas Malcher Cellular Automata and Descriptional Complexity , 2006, DCFS.

[24]  FRANK R. MOORE,et al.  On the Bounds for State-Set Size in the Proofs of Equivalence Between Deterministic, Nondeterministic, and Two-Way Finite Automata , 1971, IEEE Transactions on Computers.

[25]  Martin Kutrib,et al.  The size of Higman-Haines sets , 2007, Theor. Comput. Sci..

[26]  Dana S. Scott,et al.  Finite Automata and Their Decision Problems , 1959, IBM J. Res. Dev..

[27]  Graham Higman,et al.  Ordering by Divisibility in Abstract Algebras , 1952 .

[28]  Andreas Malcher On the Descriptional Complexity of Iterative Arrays , 2004, IEICE Trans. Inf. Syst..

[29]  Manfred K. Warmuth,et al.  Membership for Growing Context-Sensitive Grammars is Polynomial , 1986, J. Comput. Syst. Sci..

[30]  Leslie G. Valiant,et al.  A Note on the Succinctness of Descriptions of Deterministic Languages , 1976, Inf. Control..