Origin of the n-type and p-type conductivity of MoS2 monolayers on a SiO2 substrate

role, since the conduction band top and the valence band minimum of MoS2 are located approximately in the middle of the SiO2 band-gap. However, if Na impurities and O dangling bonds are introduced at the SiO2 surface, these lead to localized states, which modulate the conductivity of the MoS2 monolayer from n- to p-type. Our results show that the conductive properties of MoS2 deposited on SiO2 are mainly determined by the detailed structure of the MoS2/SiO2 interface, and suggest that doping the substrate can represent a viable strategy for engineering MoS2-based devices. PACS numbers:

[1]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[2]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[3]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[4]  S. Tadigadapa,et al.  Intrinsic doping and gate hysteresis in graphene field effect devices fabricated on SiO2 substrates , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[5]  Gang Lu,et al.  Optical identification of single- and few-layer MoS₂ sheets. , 2012, Small.

[6]  Arindam Ghosh,et al.  Nature of electronic states in atomically thin MoS₂ field-effect transistors. , 2011, ACS nano.

[7]  Thomas Heine,et al.  Influence of quantum confinement on the electronic structure of the transition metal sulfide T S 2 , 2011, 1104.3670.

[8]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[9]  P. Ajayan,et al.  Large Area Vapor Phase Growth and Characterization of MoS2 Atomic Layers on SiO2 Substrate , 2011, 1111.5072.

[10]  Tim O. Wehling,et al.  First-principles studies of water adsorption on graphene: The role of the substrate , 2008, 0809.2894.

[11]  R. Fivaz,et al.  Mobility of Charge Carriers in Semiconducting Layer Structures , 1967 .

[12]  E. Friebele,et al.  Oxygen-associated trapped-hole centers in high-purity fused silicas , 1979 .

[13]  Narain D. Arora,et al.  MOSFET Modeling for VLSI Simulation - Theory and Practice , 2006, International Series on Advances in Solid State Electronics and Technology.

[14]  Yoshihiro Iwasa,et al.  Ambipolar MoS2 thin flake transistors. , 2012, Nano letters.

[15]  B. L. Evans,et al.  Temperature dependence of the electrical conductivity and hall coefficient in 2H‐MoS2, MoSe2, WSe2, and MoTe2 , 1977 .

[16]  A. Zunger,et al.  The quest for dilute ferromagnetism in semiconductors: Guides and misguides by theory , 2010 .

[17]  Tobias J. Hagge,et al.  Physics , 1929, Nature.

[18]  S. Sanvito,et al.  Impurity-Ion pair induced high-temperature ferromagnetism in Co-doped ZnO , 2008, 0801.4945.

[19]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[20]  Matthew J. Rosseinsky,et al.  Physical Review B , 2011 .

[21]  E. Aktürk,et al.  A Comparative Study of Lattice Dynamics of Three- and Two-Dimensional MoS2 , 2011 .

[22]  S. Ciraci,et al.  Functionalization of Single-Layer MoS2 Honeycomb Structures , 2010, 1009.5527.

[23]  F. Besenbacher,et al.  Size-dependent structure of MoS2 nanocrystals. , 2007, Nature nanotechnology.

[24]  John Robertson,et al.  Band offsets of high K gate oxides on III-V semiconductors , 2006 .

[25]  Yu-Chuan Lin,et al.  Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. , 2012, Nano letters.

[26]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[27]  Hua Zhang,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[28]  S. Sanvito,et al.  Electron doping and magnetic moment formation in N- and C-doped MgO , 2009, 0902.4471.

[29]  R. Mckee,et al.  Physical structure and inversion charge at a semiconductor interface with a crystalline oxide. , 2001, Science.

[30]  Michael S. Fuhrer,et al.  Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides , 2007 .

[31]  J. M. Baik,et al.  Band-gap transition induced by interlayer van der Waals interaction in MoS 2 , 2011 .

[32]  D. Sánchez-Portal,et al.  Atomic-orbital-based approximate self-interaction correction scheme for molecules and solids , 2007 .

[33]  A. Krasheninnikov,et al.  van der Waals bonding in layered compounds from advanced density-functional first-principles calculations. , 2012, Physical review letters.

[34]  S. Okada,et al.  Semiconducting electronic property of graphene adsorbed on (0001) surfaces of SiO2. , 2011, Physical review letters.

[35]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[36]  P. Delugas,et al.  Variational pseudo-self-interaction-corrected density functional approach to the ab initio description of correlated solids and molecules , 2011, 1106.5993.

[37]  Zhiyuan Zeng,et al.  Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. , 2011, Angewandte Chemie.

[38]  D. Sánchez-Portal,et al.  Numerical atomic orbitals for linear-scaling calculations , 2001, cond-mat/0104170.

[39]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[40]  H. Dai,et al.  Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. , 2008, Physical review letters.

[41]  S. Sarma,et al.  A self-consistent theory for graphene transport , 2007, Proceedings of the National Academy of Sciences.

[42]  Jing Guo,et al.  Performance Limits of Monolayer Transition Metal Dichalcogenide Transistors , 2011, IEEE Transactions on Electron Devices.

[43]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[44]  $\hbox{MoS}_{2}$ Nanoribbon Transistors: Transition From Depletion Mode to Enhancement Mode by Channel-Width Trimming , 2012, IEEE Electron Device Letters.

[45]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[46]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[47]  A. Ramasubramaniam Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides , 2012 .

[48]  B. El-Kareh Fundamentals of Semiconductor Processing Technology , 1994 .

[49]  H. E. Bergna The Colloid Chemistry of Silica , 1994 .

[50]  Walter R. L. Lambrecht,et al.  Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS 2 , 2012 .

[51]  R. Somoano,et al.  Superconducting critical fields of alkali and alkaline-earth intercalates of MoS2 , 1976 .

[52]  S. Sanvito,et al.  Predicting d 0 magnetism: Self-interaction correction scheme , 2008 .

[53]  S. Sarma,et al.  Measurement of scattering rate and minimum conductivity in graphene. , 2007, Physical review letters.

[54]  Jared J. Hou,et al.  Controllable p-n switching behaviors of GaAs nanowires via an interface effect. , 2012, ACS nano.

[55]  Electrical transport properties of graphene on SiO2 with specific surface structures , 2011, 1106.5813.

[56]  A. V. Fedorov,et al.  Substrate-induced bandgap opening in epitaxial graphene. , 2007, Nature materials.