Arbitrage-free estimation of the risk-neutral density from the implied volatility smile

All methods for estimating the risk-neutral density from the volatility smile boil down to the completion of the implied volatility function by interpolating between available strike prices and extrapolating outside their range. In this paper we focus on the extrapolation and develop a new method, which is, under weak constraints, consistent with the absence of arbitrage. The method does not depend on a particular interpolation scheme and is therefore universally applicable. The implementation involves only straightforward numerical procedures. In an empirical study we apply the method to options on the German stock index DAX. The method turns out to be robust, accurate, and fast. Compared with the methods of Shimko (1993) and Bliss and Panigirtzoglou (2002), it tends to be superior.

[1]  K. Toft.,et al.  Constructing Binomial Trees From Multiple Implied Probability Distributions , 1999 .

[2]  M. Rubinstein.,et al.  Recovering Probability Distributions from Option Prices , 1996 .

[3]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .

[4]  William R. Melick,et al.  Recovering an Asset's Implied PDF from Option Prices: An Application to Crude Oil during the Gulf Crisis , 1997, Journal of Financial and Quantitative Analysis.

[5]  A. Buse,et al.  Elements of econometrics , 1972 .

[6]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[7]  Jens Carsten Jackwerth,et al.  Option Implied Risk-Neutral Distributions and Implied Binomial Trees: A Literature Review , 1999 .

[8]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[9]  Martin Cincibuch Distributions Implied by Exchange Traded Options: A Ghost’s Smile? , 2002 .

[10]  The yen / dollar exchange rate in 1998 : views from options markets , 1999 .

[11]  R. Hafner,et al.  The Dynamics of DAX Implied Volatilities , 2000 .

[12]  D. Heath,et al.  Introduction to Mathematical Finance , 2000 .

[13]  J. Campa,et al.  Implied Exchange Rate Distributions: Evidence from OTC Option Markets , 1997 .

[14]  Andrew W. Lo,et al.  Nonparametric estimation of state-price densities implicit in financial asset prices , 1995, Proceedings of 1995 Conference on Computational Intelligence for Financial Engineering (CIFEr).

[15]  J. Hull Options, Futures, and Other Derivatives , 1989 .

[16]  James B. McDonald,et al.  A General Distribution for Describing Security Price Returns , 1987 .

[17]  J. Jackwerth Recovering Risk Aversion from Option Prices and Realized Returns , 1998 .

[18]  R. Bliss,et al.  TESTING TECHNIQUES FOR ESTIMATING IMPLIED RNDS FROM THE PRICES OF EUROPEAN-STYLE OPTIONS , 1999 .

[19]  Nikolaos Panigirtzoglou,et al.  Testing the Stability of Implied Probability Density Functions , 2002 .

[20]  Rama Cont Beyond implied volatility , 1998 .

[21]  A. Lo,et al.  Nonparametric Risk Management and Implied Risk Aversion , 2000 .

[22]  Mark Zelmer,et al.  The Information Content of Interest Rate Futures Options , 1994 .

[23]  A. Lo,et al.  Nonparametric Estimation of State‐Price Densities Implicit in Financial Asset Prices , 1998 .

[24]  S. Ross,et al.  The valuation of options for alternative stochastic processes , 1976 .

[25]  E. Stein,et al.  Stock Price Distributions with Stochastic Volatility: An Analytic Approach , 1991 .

[26]  S. Trautmann,et al.  Impact of Stock Price Jumps on Option Values , 1999 .

[27]  Bhupinder Bahra Implied Risk-Neutral Probability Density Functions from Option Prices: Theory and Application , 1997 .

[28]  Douglas T. Breeden,et al.  Prices of State-Contingent Claims Implicit in Option Prices , 1978 .

[29]  Sheldon Natenberg,et al.  Option Volatility & Pricing: Advanced Trading Strategies and Techniques , 1988 .

[30]  K. Arrow The Role of Securities in the Optimal Allocation of Risk-bearing , 1964 .

[31]  J. Campa,et al.  Erm Bandwidths for Emu and after: Evidence from Foreign Exchange Options , 1997 .

[32]  Allan M. Malz Estimating the Probability Distribution of the Future Exchange Rate from Option Prices , 1997 .

[33]  David S. Bates The Crash of ʼ87: Was It Expected? The Evidence from Options Markets , 1991 .

[34]  Joshua V. Rosenberg,et al.  Implied volatility functions: a reprise , 1999, Proceedings of the IEEE/IAFE/INFORMS 2000 Conference on Computational Intelligence for Financial Engineering (CIFEr) (Cat. No.00TH8520).

[35]  S. Ross Options and Efficiency , 1976 .

[36]  H. Neuhaus Der Informationsgehalt Von Derivaten Für Die Geldpolitik: Implizite Volatilitäten Und Wahrscheinlichkeiten , 1995, SSRN Electronic Journal.

[37]  G. Debreu,et al.  Theory of Value , 1959 .