Guidance and Flight Control Law Development for Hypersonic Vehicles

During the third reporting period our efforts were focused on a reformulation of the optimal control problem involving active state-variable inequality constraints. In the reformulated problem the optimization is carried out not with respect to all controllers, but only with respect to asymptotic controllers leading to the state constraint boundary. Intimately connected with the traditional formulation is the fact that when the reduced solution for such problems lies on a state constraint boundary, the corresponding boundary layer transitions are of finite time in the stretched time scale. Thus, it has been impossible so far to apply the classical asymptotic boundary layer theory to such problems. Moreover, the traditional formulation leads to optimal controllers that are one-sided, that is, they break down when a disturbance throws the system on the prohibited side of the state constraint boundary.