Efficient algorithms for finding optimal binary features in numeric and nominal labeled data
暂无分享,去创建一个
Siegfried Nijssen | A. J. Feelders | Arno J. Knobbe | Rob M. Konijn | Michael Mampaey | Siegfried Nijssen | A. Knobbe | A. Feelders | R. Konijn | Michael Mampaey
[1] Johannes Fürnkranz,et al. ROC ‘n’ Rule Learning—Towards a Better Understanding of Covering Algorithms , 2005, Machine Learning.
[2] Philip A. Chou,et al. Optimal Partitioning for Classification and Regression Trees , 1991, IEEE Trans. Pattern Anal. Mach. Intell..
[3] A. Rényi,et al. über die konvexe Hülle von n zufällig gewählten Punkten , 1963 .
[4] María José del Jesús,et al. An overview on subgroup discovery: foundations and applications , 2011, Knowledge and Information Systems.
[5] Branko Kavsek,et al. APRIORI-SD: ADAPTING ASSOCIATION RULE LEARNING TO SUBGROUP DISCOVERY , 2006, IDA.
[6] Leo Breiman,et al. Classification and Regression Trees , 1984 .
[7] Frank Puppe,et al. SD-Map - A Fast Algorithm for Exhaustive Subgroup Discovery , 2006, PKDD.
[8] Wilhelmiina Hämäläinen,et al. Kingfisher: an efficient algorithm for searching for both positive and negative dependency rules with statistical significance measures , 2011, Knowledge and Information Systems.
[9] Geoffrey I. Webb,et al. Supervised Descriptive Rule Discovery: A Unifying Survey of Contrast Set, Emerging Pattern and Subgroup Mining , 2009, J. Mach. Learn. Res..
[10] Wei-Yin Loh,et al. Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..
[11] A. Knobbe,et al. Flexible Enrichment with Cortana – Software Demo , 2011 .
[12] Michael Ian Shamos,et al. Computational geometry: an introduction , 1985 .
[13] Usama M. Fayyad,et al. Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning , 1993, IJCAI.
[14] Ronald L. Graham,et al. An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set , 1972, Inf. Process. Lett..
[15] Yasuhiko Morimoto,et al. Mining optimized association rules for numeric attributes , 1996, J. Comput. Syst. Sci..
[16] Szymon Jaroszewicz,et al. Decision trees for uplift modeling with single and multiple treatments , 2011, Knowledge and Information Systems.
[17] C.J.H. Mann,et al. Handbook of Data Mining and Knowledge Discovery , 2004 .
[18] Tomasz Imielinski,et al. Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.
[19] Tapio Elomaa,et al. Efficient Multisplitting Revisited: Optima-Preserving Elimination of Partition Candidates , 2004, Data Mining and Knowledge Discovery.
[20] Marco Costanigro,et al. Estimating class‐specific parametric models under class uncertainty: local polynomial regression clustering in an hedonic analysis of wine markets , 2009 .
[21] Toon Calders,et al. Mining Frequent Itemsets in a Stream , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).
[22] Stefan Wrobel,et al. An Algorithm for Multi-relational Discovery of Subgroups , 1997, PKDD.
[23] J. E Nymann. On the probability that k positive integers are relatively prime , 1972 .
[24] Stefan Rüping,et al. On subgroup discovery in numerical domains , 2009, Data Mining and Knowledge Discovery.