NASICON structure for alkaline ion recognition

Abstract Crystallized fast-alkaline conductors have promising properties for ion electrochemical sensors. Their conductivity at room temperature is very high (about 10−4–10−3 S cm−1). The selectivity effect of such membranes is based on the calibration of conductive sites in the structure. NASICON materials are good examples from this point of view. Suitable cationic substitutions allow to adjust the size of the conduction sites and then to improve the selectivity effect. Recent experimental results on Na + and Li+ membranes are shown in this field.

[1]  J. Bartrolí,et al.  Conductive epoxy-graphite composite as a solid internal reference in a NASICON-based sodium ion-selective electrode for flow-injection analysis , 1995 .

[2]  E. Siebert,et al.  NASICON: a Sensitive Membrane for Ion Analysis , 1992 .

[3]  P. Fabry,et al.  Nasicon, an ionic conductor for solid-state Na+-selective electrode , 1988 .

[4]  J. R. Sandifer Theory of interfacial potential differences: effects of adsorption onto hydrated (gel) and nonhydrated surfaces , 1988 .

[5]  J. P. Boilot,et al.  Relation Structure-Fast Ion Conduction in the NASICON Solid Solution , 1988 .

[6]  M. Attari,et al.  A new double-jet cell for fast ion-sensitive electrodes , 1993 .

[7]  Y. Sadaoka,et al.  Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate , 1990 .

[8]  M. Armand,et al.  Polymer electrolyte as internal ionic bridge for ion solid-state sensors , 1988 .

[9]  E. Siebert,et al.  Performance characteristics of sodium super ionic conductor prepared by the sol-gel route for sodium ion sensors , 1991 .

[10]  B. P. Nikolskii,et al.  Solid Contact in Membrane Ion-Selective Electrodes , 1985 .

[11]  T. Seiyama,et al.  Chemical sensor technology , 1988 .

[12]  H. Schulz,et al.  NASICON solid electrolytes part I: The Na+-diffusion path and its relation to the structure , 1985 .

[13]  John B. Goodenough,et al.  Fast Na+-ion transport in skeleton structures , 1976 .

[14]  A. Clearfield,et al.  A time of flight neutron powder rietveld refinement study at elevated temperature on a monoclinic near-stoichiometric NASICON , 1988 .

[15]  M. Attari,et al.  Preparation of NASICON thin films by dip-coating on Si/SiO2 wafers and corresponding C-V measurements , 1991 .

[16]  P. Colomban Gel technology in ceramics, glass-ceramics and ceramic-ceramic composites☆ , 1989 .

[17]  M. Ilgenstein,et al.  NASICON electrode for detecting sodium ions , 1994 .

[18]  P. Taylor,et al.  Characterization of protonically exchanged NASICON , 1991 .

[19]  J. Engell,et al.  Fabrication of Nasicon electrolytes from metal alkoxide derived gels , 1983 .

[20]  P. Fabry,et al.  Study of Li1 + xAlxTi2 − x(PO4)3 for Li+ potentiometric sensors , 1995 .

[21]  H. Hong,et al.  Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12☆ , 1976 .

[22]  E. Siebert,et al.  Ionic exchange and selectivity of NASICON sensitive membranes , 1992 .