Analyzing N-Point Energy Correlators inside Jets with CMS Open Data.

Jets of hadrons produced at high-energy colliders provide experimental access to the dynamics of asymptotically free quarks and gluons and their confinement into hadrons. In this Letter, we show that the high energies of the Large Hadron Collider (LHC), together with the exceptional resolution of its detectors, allow multipoint correlation functions of energy flow operators to be directly measured within jets for the first time. Using Open Data from the CMS experiment, we show that reformulating jet substructure in terms of these correlators provides new ways of probing the dynamics of QCD jets, which enables direct imaging of the confining transition to free hadrons as well as precision measurements of the scaling properties and interactions of quarks and gluons. This opens a new era in our understanding of jet substructure and illustrates the immense unexploited potential of high-quality LHC data sets for elucidating the dynamics of QCD.

[1]  I. Moult,et al.  Renormalization group flows for track function moments , 2022, Journal of High Energy Physics.

[2]  S. Prestel,et al.  Disentangling soft and collinear effects in QCD parton showers , 2021, Physical Review D.

[3]  G. Korchemsky,et al.  On the light-ray algebra in conformal field theories , 2021, Journal of High Energy Physics.

[4]  S. Elgammal,et al.  Search for the production of dark matter candidates in association with heavy dimuon resonance using the CMS open data for pp collisions at $\sqrt{s}$ = 8 TeV , 2021, 2109.11274.

[5]  I. Moult,et al.  Extending Precision Perturbative QCD with Track Functions. , 2021, Physical review letters.

[6]  Zhen Hu,et al.  Exploring Uncharted Soft Displaced Vertices in Open Data , 2021, 2107.11405.

[7]  G. Korchemsky,et al.  Generalizing event shapes: in search of lost collider time , 2021, Journal of High Energy Physics.

[8]  Hao Chen,et al.  Spinning gluons from the QCD light-ray OPE , 2021, Journal of High Energy Physics.

[9]  R. Verheyen,et al.  Spin correlations in final-state parton showers and jet observables , 2021, The European Physical Journal C.

[10]  Jun Gao,et al.  Energy-energy correlation in hadronic Higgs decays: analytic results and phenomenology at NLO , 2020, Journal of High Energy Physics.

[11]  B. Mistlberger,et al.  The Energy-Energy Correlation in the back-to-back limit at N3LO and N3LL′ , 2020, Journal of High Energy Physics.

[12]  K. Zapp,et al.  Time reclustering for jet quenching studies , 2020, The European Physical Journal C.

[13]  Hao Chen,et al.  Quantum Interference in Jet Substructure from Spinning Gluons. , 2020, Physical review letters.

[14]  D. Simmons-Duffin,et al.  Transverse spin in the light-ray OPE , 2020, Journal of High Energy Physics.

[15]  W. Y. Chan,et al.  Optimisation of large-radius jet reconstruction for the ATLAS detector in 13 TeV proton-proton collisions , 2020, 2009.04986.

[16]  Hao Chen,et al.  Rethinking jets with energy correlators: Tracks, resummation, and analytic continuation , 2020, Physical Review D.

[17]  C. Collaboration,et al.  Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques , 2020, 2004.08262.

[18]  Atlas Collaboration,et al.  Measurement of the Lund jet plane using charged particles in 13 TeV proton-proton collisions with the ATLAS detector , 2020, 2004.03540.

[19]  K. Yan,et al.  From correlation functions to event shapes in QCD , 2020, Journal of High Energy Physics.

[20]  Hao Chen,et al.  Three point energy correlators in the collinear limit: symmetries, dualities and analytic results , 2019, Journal of High Energy Physics.

[21]  D. Ghosh,et al.  Study of Di-Muon Production Process in pp Collision in CMS Data from Symmetry Scaling Perspective , 2019, 1911.09928.

[22]  K. Tywoniuk,et al.  Dynamical grooming of QCD jets , 2019, Physical Review D.

[23]  A. H. Chan,et al.  Intermittency in pseudorapidity space of pp collisions at √s $ \sqrt s $ = 7 TeV , 2019, EPJ Web of Conferences.

[24]  Patrick T. Komiske,et al.  Exploring the space of jets with CMS open data , 2019, Physical Review D.

[25]  A. Fahim,et al.  Explicit jet veto as a tool to purify the underlying event in the Drell–Yan process using CMS Open Data , 2019, Journal of Physics G: Nuclear and Particle Physics.

[26]  Markus Klute,et al.  Opportunities and challenges of Standard Model production cross section measurements in proton-proton collisions at √s=8 TeV using CMS Open Data , 2019, Journal of Instrumentation.

[27]  D. Simmons-Duffin,et al.  The light-ray OPE and conformal colliders , 2019, Journal of High Energy Physics.

[28]  I. Moult,et al.  Collinear limit of the energy-energy correlator , 2019, Physical Review D.

[29]  Matthias Schott,et al.  Testing non-standard sources of parity violation in jets at the LHC, trialled with CMS Open Data , 2019, Journal of High Energy Physics.

[30]  D. Simmons-Duffin,et al.  Shocks, superconvergence, and a stringy equivalence principle , 2019, Journal of High Energy Physics.

[31]  Vladyslav Shtabovenko,et al.  Analytic next-to-leading order calculation of energy-energy correlation in gluon-initiated Higgs decays , 2019, Journal of High Energy Physics.

[32]  K. Yan,et al.  Energy-energy correlation in N=4 super Yang-Mills theory at next-to-next-to-leading order , 2019, Physical Review D.

[33]  Wei Xue,et al.  Searching in CMS open data for dimuon resonances with substantial transverse momentum , 2019, Physical Review D.

[34]  Jesse Thaler,et al.  Metric Space of Collider Events. , 2019, Physical review letters.

[35]  M. Spannowsky,et al.  Looking Inside Jets , 2019, Lecture Notes in Physics.

[36]  Patrick T. Komiske,et al.  Energy flow networks: deep sets for particle jets , 2018, Journal of High Energy Physics.

[37]  Patrick T. Komiske,et al.  An operational definition of quark and gluon jets , 2018, Journal of High Energy Physics.

[38]  Matthew Nguyen,et al.  Novel tools and observables for jet physics in heavy-ion collisions , 2018, Journal of Physics G: Nuclear and Particle Physics.

[39]  J. Thaler,et al.  Aspects of track-assisted mass , 2018, Journal of High Energy Physics.

[40]  D. Simmons-Duffin,et al.  Light-ray operators in conformal field theory , 2018, Journal of High Energy Physics.

[41]  M. Campanelli,et al.  Jet substructure at the Large Hadron Collider , 2018, Reviews of Modern Physics.

[42]  Vladyslav Shtabovenko,et al.  Analytical Computation of Energy-Energy Correlation at Next-to-Leading Order in QCD. , 2018, Physical review letters.

[43]  G. Salam,et al.  Probing the Time Structure of the Quark-Gluon Plasma with Top Quarks. , 2017, Physical review letters.

[44]  B. Nachman,et al.  Jet substructure at the Large Hadron Collider: A review of recent advances in theory and machine learning , 2017, Physics Reports.

[45]  Atlas Collaboration Determination of the strong coupling constant $$\alpha _\mathrm {s}$$ α s from transvers , 2017, 1707.02562.

[46]  C. Collaboration,et al.  Particle-flow reconstruction and global event description with the CMS detector , 2017, 1706.04965.

[47]  F. Krauss,et al.  Implementing NLO DGLAP evolution in parton showers , 2017, Journal of High Energy Physics.

[48]  S. Hoche,et al.  Triple collinear emissions in parton showers , 2017, 1705.00742.

[49]  Wei Xue,et al.  Jet Substructure Studies with CMS Open Data , 2017, 1704.05842.

[50]  M. Procura,et al.  Generalized fragmentation functions for fractal jet observables , 2017, Journal of High Energy Physics.

[51]  A. Tripathee,et al.  Exposing the QCD Splitting Function with CMS Open Data. , 2017, Physical review letters.

[52]  A. S. Mete,et al.  Jet reconstruction and performance using particle flow with the ATLAS Detector , 2017, The European Physical Journal. C, Particles and Fields.

[53]  P. Skands,et al.  A framework for second-order parton showers , 2016, 1611.00013.

[54]  Thomas Hartman,et al.  Averaged null energy condition from causality , 2016, Journal of High Energy Physics.

[55]  F. Ringer,et al.  Jet substructure using semi-inclusive jet functions in SCET , 2016, 1606.07063.

[56]  F. Ringer,et al.  The semi-inclusive jet function in SCET and small radius resummation for inclusive jet production , 2016, 1606.06732.

[57]  Onkar Parrikar,et al.  Modular Hamiltonians for deformed half-spaces and the averaged null energy condition , 2016, 1605.08072.

[58]  P. Calabrese,et al.  Real-time confinement following a quantum quench to a non-integrable model , 2016, Nature Physics.

[59]  G. Korchemsky,et al.  Four-point correlation function of stress-energy tensors in N=4$$ \mathcal{N}=4 $$ superconformal theories , 2015, 1504.07904.

[60]  Peter Skands,et al.  An introduction to PYTHIA 8.2 , 2014, Comput. Phys. Commun..

[61]  G.P.Korchemsky,et al.  N=4 superconformal Ward identities for correlation functions , 2014, 1409.2502.

[62]  G. Korchemsky,et al.  N=4 superconformal Ward identities for correlation functions , 2014 .

[63]  G. Korchemsky,et al.  From correlation functions to event shapes , 2013, 1309.0769.

[64]  C. Collaboration,et al.  Description and performance of track and primary-vertex reconstruction with the CMS tracker , 2014, 1405.6569.

[65]  G. Soyez,et al.  Soft drop , 2014, 1402.2657.

[66]  G. Korchemsky,et al.  Energy-energy correlations in n=4 supersymmetric Yang-Mills theory. , 2013, Physical review letters.

[67]  G. Korchemsky,et al.  Event shapes in N = 4 super-Yang-Mills theory , 2013, 1309.1424.

[68]  G. Salam,et al.  Towards an understanding of jet substructure , 2013, 1307.0007.

[69]  M. Procura,et al.  Calculating Track Thrust with Track Functions , 2013, 1306.6630.

[70]  M. Procura,et al.  Calculating track-based observables for the LHC. , 2013, Physical review letters.

[71]  I. Stewart,et al.  Power corrections to event shapes with mass-dependent operators , 2012, 1209.3781.

[72]  C. Collaboration,et al.  Shape, transverse size, and charged-hadron multiplicity of jets in pp collisions at sqrt(s) = 7 TeV , 2012, 1204.3170.

[73]  Tilman Plehn,et al.  Top Tagging , 2011, 1112.4441.

[74]  M. Cacciari,et al.  FastJet user manual , 2011, 1111.6097.

[75]  C. Collaboration,et al.  Determination of Jet Energy Calibration and Transverse Momentum Resolution in CMS , 2011, 1107.4277.

[76]  Lian-tao Wang,et al.  Jet trimming , 2009, 0912.1342.

[77]  M. Procura,et al.  Quark fragmentation within an identified jet , 2009, 0911.4980.

[78]  João Paulo Teixeira,et al.  The CMS experiment at the CERN LHC , 2008 .

[79]  David E Kaplan,et al.  Top-Tagging: A Method for Identifying Boosted Hadronic Tops , 2008 .

[80]  E. Iancu,et al.  Jet evolution in the N = 4 SYM plasma at strong coupling , 2008, 0803.2481.

[81]  J. Maldacena,et al.  Conformal collider physics: energy and charge correlations , 2008, 0803.1467.

[82]  M. Cacciari,et al.  The anti-$k_t$ jet clustering algorithm , 2008, 0802.1189.

[83]  C. Bauer,et al.  Factorization of e+e- event shape distributions with hadronic final states in soft collinear effective theory , 2008, 0801.4569.

[84]  M. Strassler Why Unparticle Models with Mass Gaps are Examples of Hidden Valleys , 2008, 0801.0629.

[85]  M. Cacciari,et al.  Dispelling the N3 myth for the kt jet-finder , 2005, hep-ph/0512210.

[86]  G.P.Korchemsky,et al.  Power corrections to event shapes and factorization , 1999, hep-ph/9902341.

[87]  G. Sterman,et al.  Power corrections and nonlocal operators , 1997, hep-ph/9708346.

[88]  F. Tkachov,et al.  Jets and quantum field theory , 1996 .

[89]  F.V.Tkachov,et al.  Jets and Quantum Field Theory , 1995, hep-ph/9512370.

[90]  G. Sterman,et al.  Nonperturbative corrections in resummed cross sections , 1995 .

[91]  Burke,et al.  Measurement of alpha s(MZ2) from hadronic event observables at the Z0 resonance. , 1995, Physical review. D, Particles and fields.

[92]  P. K. Malhotra,et al.  Determination of alpha-s from hadronic event shapes measured on the Z0 resonance , 1992 .

[93]  R. Wald,et al.  General proof of the averaged null energy condition for a massless scalar field in two-dimensional curved spacetime. , 1991, Physical review. D, Particles and fields.

[94]  Klinkhammer,et al.  Averaged energy conditions for free scalar fields in flat spacetime. , 1991, Physical review. D, Particles and fields.

[95]  Y. Kato,et al.  Measurements of αs in e+e− annihilation at √s=53.3 GeV and 59.5 GeV , 1989 .

[96]  Wood,et al.  Determination of alpha s from energy-energy correlations in e+e- annihilation at 29 GeV. , 1987, Physical review. D, Particles and fields.

[97]  F. J. Kirschfink,et al.  A study of energy-energy correlations between 12 and 46.8 GeV c.m. energies , 1987 .

[98]  M. Feindt,et al.  A study of energy-energy correlations ine+e− annihilations at $$\sqrt s = 34.6$$ GeV , 1985 .

[99]  J. Baines,et al.  Measurements of energy correlations ine+e−→hadrons , 1984 .

[100]  M. Davier,et al.  Analysis of the energy weighted angular correlations in hadronice+e− annihilations at 22 and 34 GeV , 1982 .

[101]  B. Webber,et al.  Transverse Momentum Moments of Hadron Distributions in {QCD} Jets , 1981 .

[102]  F. Low,et al.  Tensor analysis of hadronic jets in quantum chromodynamics , 1979 .

[103]  G. Veneziano,et al.  Jet calculus: A simple algorithm for resolving QCD jets , 1979 .

[104]  S. D. Ellis,et al.  Energy correlations in perturbative quantum chromodynamics: A conjecture for all orders , 1979 .

[105]  S. D. Ellis,et al.  Energy correlations in electron-positron annihilation in quantum chromodynamics: Asymptotically free perturbation theory , 1979 .

[106]  F. Tipler Energy conditions and spacetime singularities , 1978 .

[107]  S. D. Ellis,et al.  Electron-positron annihilation energy pattern in quantum chromodynamics: Asymptotically free perturbation theory , 1978 .

[108]  G. Parisi Superinclusive cross sections , 1978 .

[109]  J. Ellis,et al.  Search for gluons in e+e− annihilation , 1976 .

[110]  S. Brodsky,et al.  Statistical Model for Electron-Positron Annihilation into Hadrons , 1970 .

[111]  G. Korchemsky,et al.  Four-point correlation function of stress-energy tensors in N = 4 superconformal theories , 2015 .

[112]  J. Butterworth,et al.  Ju n 20 08 Jet substructure as a new Higgs search channel at the LHC , 2008 .