Fractals, coherent states and self-similarity induced noncommutative geometry
暂无分享,去创建一个
[1] Dietmar Saupe,et al. Chaos and fractals - new frontiers of science , 1992 .
[2] Dissipation and quantization , 2000, hep-th/0007138.
[3] S. E. Khaikin,et al. Theory of Oscillators , 1966 .
[4] H. Godfrin,et al. Topological defects and the non-equilibrium dynamics of symmetry breaking phase transitions , 2000 .
[5] O. Pashaev. Vortex Images, q-Calculus and Entangled Coherent States , 2012 .
[6] S. Siena,et al. Thermo field dynamics and quantum algebras , 1998, hep-th/9801031.
[7] John Ellis,et al. Int. J. Mod. Phys. , 2005 .
[8] Ericka Stricklin-Parker,et al. Ann , 2005 .
[9] Sengul Nalci,et al. Golden quantum oscillator and Binet–Fibonacci calculus , 2011, 1107.4389.
[10] M. A. Lohe,et al. An extension of the Borel-Weil construction to the quantum groupUq(n) , 1992 .
[11] Massimo Piattelli-Palmarini,et al. Still a bridge too far? Biolinguistic questions for grounding language on brains , 2008 .
[12] Phase Coherence in Quantum Brownian Motion , 1997, quant-ph/9707048.
[13] P. Jizba,et al. Dissipation and quantization for composite systems , 2009 .
[14] P. Jizba,et al. Quantization, group contraction and zero point energy , 2002, quant-ph/0208012.
[15] A NOVEL APPROACH TO NONCOMMUTATIVITY IN PLANAR QUANTUM MECHANICS , 2001, hep-th/0106280.
[16] P. Horvathy,et al. Anyon wave equations and the noncommutative plane , 2004, hep-th/0404137.
[17] George Sugihara,et al. Fractals in science , 1995 .
[18] R. Schützhold,et al. BOOK REVIEW: Quantum Analogues: From Phase Transitions to Black Holes and Cosmology , 2007 .
[19] S. Liberati. Quantum Analogues: From Phase Transitions to Black Holes and Cosmology , 2008 .
[20] A canonical approach to the quantization of the damped harmonic oscillator , 2001, quant-ph/0108055.
[21] J. Sethna,et al. Bending crystals: emergence of fractal dislocation structures. , 2010, Physical review letters.
[22] Patrick Brézillon,et al. Lecture Notes in Artificial Intelligence , 1999 .
[23] H. Yuen. Two-photon coherent states of the radiation field , 1976 .
[24] W. J. Freeman,et al. CORTICAL PHASE TRANSITIONS, NONEQUILIBRIUM THERMODYNAMICS AND THE TIME-DEPENDENT GINZBURG–LANDAU EQUATION , 2011, 1110.3677.
[25] G. Vitiello,et al. Dissipation and Topologically Massive Gauge Theories in the Pseudo-Euclidean Plane , 1996 .
[26] J. Linnett,et al. Quantum mechanics , 1975, Nature.
[27] M. Rasetti,et al. SU(1,1) SQUEEZED STATES AS DAMPED OSCILLATORS , 1989 .
[28] Giuseppe Vitiello,et al. COHERENT STATES, FRACTALS AND BRAIN WAVES , 2009, 0906.0564.
[29] M. Rasetti,et al. Quantum groups, coherent states, squeezing and lattice quantum mechanics , 1995 .
[30] Quantum dissipation induced noncommutative geometry , 2003, quant-ph/0301005.
[31] H. Matsumoto,et al. Thermo Field Dynamics and Condensed States , 1982 .
[32] A. Messiah. Quantum Mechanics , 1961 .
[33] G. Hooft. Quantum gravity as a dissipative deterministic system , 1999, gr-qc/9903084.
[34] M. Rasetti,et al. Squeezing and quantum groups. , 1991, Physical Review Letters.
[35] M. Yamaguti,et al. Chaos and Fractals , 1987 .
[36] Julian Schwinger,et al. Brownian Motion of a Quantum Oscillator , 1961 .
[37] A. Perelomov. Generalized Coherent States and Their Applications , 1986 .