Fractals, coherent states and self-similarity induced noncommutative geometry

Abstract The self-similarity properties of fractals are studied in the framework of the theory of entire analytical functions and the q-deformed algebra of coherent states. Self-similar structures are related to dissipation and to noncommutative geometry in the plane. The examples of the Koch curve and logarithmic spiral are considered in detail. It is suggested that the dynamical formation of fractals originates from the coherent boson condensation induced by the generators of the squeezed coherent states, whose (fractal) geometrical properties thus become manifest. The macroscopic nature of fractals appears to emerge from microscopic coherent local deformation processes.

[1]  Dietmar Saupe,et al.  Chaos and fractals - new frontiers of science , 1992 .

[2]  Dissipation and quantization , 2000, hep-th/0007138.

[3]  S. E. Khaikin,et al.  Theory of Oscillators , 1966 .

[4]  H. Godfrin,et al.  Topological defects and the non-equilibrium dynamics of symmetry breaking phase transitions , 2000 .

[5]  O. Pashaev Vortex Images, q-Calculus and Entangled Coherent States , 2012 .

[6]  S. Siena,et al.  Thermo field dynamics and quantum algebras , 1998, hep-th/9801031.

[7]  John Ellis,et al.  Int. J. Mod. Phys. , 2005 .

[8]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[9]  Sengul Nalci,et al.  Golden quantum oscillator and Binet–Fibonacci calculus , 2011, 1107.4389.

[10]  M. A. Lohe,et al.  An extension of the Borel-Weil construction to the quantum groupUq(n) , 1992 .

[11]  Massimo Piattelli-Palmarini,et al.  Still a bridge too far? Biolinguistic questions for grounding language on brains , 2008 .

[12]  Phase Coherence in Quantum Brownian Motion , 1997, quant-ph/9707048.

[13]  P. Jizba,et al.  Dissipation and quantization for composite systems , 2009 .

[14]  P. Jizba,et al.  Quantization, group contraction and zero point energy , 2002, quant-ph/0208012.

[15]  A NOVEL APPROACH TO NONCOMMUTATIVITY IN PLANAR QUANTUM MECHANICS , 2001, hep-th/0106280.

[16]  P. Horvathy,et al.  Anyon wave equations and the noncommutative plane , 2004, hep-th/0404137.

[17]  George Sugihara,et al.  Fractals in science , 1995 .

[18]  R. Schützhold,et al.  BOOK REVIEW: Quantum Analogues: From Phase Transitions to Black Holes and Cosmology , 2007 .

[19]  S. Liberati Quantum Analogues: From Phase Transitions to Black Holes and Cosmology , 2008 .

[20]  A canonical approach to the quantization of the damped harmonic oscillator , 2001, quant-ph/0108055.

[21]  J. Sethna,et al.  Bending crystals: emergence of fractal dislocation structures. , 2010, Physical review letters.

[22]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[23]  H. Yuen Two-photon coherent states of the radiation field , 1976 .

[24]  W. J. Freeman,et al.  CORTICAL PHASE TRANSITIONS, NONEQUILIBRIUM THERMODYNAMICS AND THE TIME-DEPENDENT GINZBURG–LANDAU EQUATION , 2011, 1110.3677.

[25]  G. Vitiello,et al.  Dissipation and Topologically Massive Gauge Theories in the Pseudo-Euclidean Plane , 1996 .

[26]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[27]  M. Rasetti,et al.  SU(1,1) SQUEEZED STATES AS DAMPED OSCILLATORS , 1989 .

[28]  Giuseppe Vitiello,et al.  COHERENT STATES, FRACTALS AND BRAIN WAVES , 2009, 0906.0564.

[29]  M. Rasetti,et al.  Quantum groups, coherent states, squeezing and lattice quantum mechanics , 1995 .

[30]  Quantum dissipation induced noncommutative geometry , 2003, quant-ph/0301005.

[31]  H. Matsumoto,et al.  Thermo Field Dynamics and Condensed States , 1982 .

[32]  A. Messiah Quantum Mechanics , 1961 .

[33]  G. Hooft Quantum gravity as a dissipative deterministic system , 1999, gr-qc/9903084.

[34]  M. Rasetti,et al.  Squeezing and quantum groups. , 1991, Physical Review Letters.

[35]  M. Yamaguti,et al.  Chaos and Fractals , 1987 .

[36]  Julian Schwinger,et al.  Brownian Motion of a Quantum Oscillator , 1961 .

[37]  A. Perelomov Generalized Coherent States and Their Applications , 1986 .