Improved Aerosol Processes and Effective Radiative Forcing in HadGEM3 and UKESM1

Aerosol processes and, in particular, aerosol-cloud interactions cut across the traditional physical-Earth system boundary of coupled Earth system models and remain one of the key uncertainties in estimating anthropogenic radiative forcing of climate. Here we calculate the historical aerosol effective radiative forcing (ERF) in the HadGEM3-GA7 climate model in order to assess the suitability of this model for inclusion in the UK Earth system model, UKESM1. The aerosol ERF, calculated for the year 2000 relative to 1850, is large and negative in the standard GA7 model leading to an unrealistic negative total anthropogenic forcing over the twentieth century. We show how underlying assumptions and missing processes in both the physical model and aerosol parameterizations lead to this large aerosol ERF. A number of model improvements are investigated to assess their impact on the aerosol ERF. These include an improved representation of cloud droplet spectral dispersion, updates to the aerosol activation scheme, and black carbon optical properties. One of the largest contributors to the aerosol forcing uncertainty is insufficient knowledge of the preindustrial aerosol climate. We evaluate the contribution of uncertainties in the natural marine emissions of dimethyl sulfide and organic aerosol to the ERF. The combination of model improvements derived from these studies weakens the aerosol ERF by up to 50% of the original value and leads to a total anthropogenic historical forcing more in line with assessed values.

[1]  Hartwig Deneke,et al.  Remote Sensing of Droplet Number Concentration in Warm Clouds: A Review of the Current State of Knowledge and Perspectives , 2018, Reviews of geophysics.

[2]  G. Mann,et al.  Impact of the modal aerosol scheme GLOMAP-mode on aerosol forcing in the Hadley Centre Global Environmental Model , 2012 .

[3]  Martyn P. Chipperfield,et al.  Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model , 2010 .

[4]  Yiran Peng,et al.  Dispersion bias, dispersion effect, and the aerosol–cloud conundrum , 2008 .

[5]  S. Twomey Pollution and the Planetary Albedo , 1974 .

[6]  S. Ghan,et al.  Constraining the instantaneous aerosol influence on cloud albedo , 2017, Proceedings of the National Academy of Sciences.

[7]  D. Shindell,et al.  Anthropogenic and Natural Radiative Forcing , 2014 .

[8]  A. Lock,et al.  The turbulent kinetic energy budget for shallow cumulus convection , 2004 .

[9]  U. Lohmann,et al.  What governs the spread in shortwave forcings in the transient IPCC AR4 models? , 2009 .

[10]  Thorsten Mauritsen,et al.  The Observed Hemispheric Symmetry in Reflected Shortwave Irradiance , 2013 .

[11]  Andrew Gettelman,et al.  The Art and Science of Climate Model Tuning , 2017 .

[12]  Athanasios Nenes,et al.  Phytoplankton and Cloudiness in the Southern Ocean , 2006, Science.

[13]  David S. Lee,et al.  Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application , 2010 .

[14]  S. Ghan,et al.  A parameterization of aerosol activation: 2. Multiple aerosol types , 2000 .

[15]  Xiao-dong Liu,et al.  Analytical studies of the cloud droplet spectral dispersion influence on the first indirect aerosol effect , 2013, Advances in Atmospheric Sciences.

[16]  Robert C. Levy,et al.  MODIS Collection 6 aerosol products: Comparison between Aqua's e‐Deep Blue, Dark Target, and “merged” data sets, and usage recommendations , 2014 .

[17]  M. Kelley,et al.  Interactive nature of climate change and aerosol forcing , 2017, Journal of geophysical research. Atmospheres : JGR.

[18]  A. Bodas‐Salcedo,et al.  The Surface Downwelling Solar Radiation Surplus over the Southern Ocean in the Met Office Model: The Role of Midlatitude Cyclone Clouds , 2012 .

[19]  K. Carslaw,et al.  Aerosols in the Pre-industrial Atmosphere , 2017, Current Climate Change Reports.

[20]  S. Woodward,et al.  Modeling the atmospheric life cycle and radiative impact of mineral dust in the Hadley Centre climate model , 2001 .

[21]  D. Ceburnis,et al.  Biogenically driven organic contribution to marine aerosol , 2004, Nature.

[22]  J. Lamarque,et al.  Aerosol indirect effects – general circulation model intercomparison and evaluation with satellite data , 2009 .

[23]  C. Scott,et al.  Substantial large-scale feedbacks between natural aerosols and climate , 2017, Nature Geoscience.

[24]  C. Bretherton,et al.  Improving our fundamental understanding of the role of aerosol−cloud interactions in the climate system , 2016, Proceedings of the National Academy of Sciences.

[25]  Jean-François Léon,et al.  Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust , 2006 .

[26]  Cecile Hannay,et al.  Practice and philosophy of climate model tuning across six U.S. modeling centers. , 2017, Geoscientific model development.

[27]  D. Ceburnis,et al.  Wind speed dependent size-resolved parameterization for the organic mass fraction of sea spray aerosol , 2011 .

[28]  Edward W. Blockley,et al.  The sea ice model component of HadGEM3-GC3.1 , 2017 .

[29]  Leon D. Rotstayn,et al.  Cloud droplet spectral dispersion and the indirect aerosol effect: Comparison of two treatments in a GCM , 2009 .

[30]  J. Dachs,et al.  Global ocean emission of dimethylsulfide predicted from biogeophysical data , 2002 .

[31]  A. J. Kettle,et al.  An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean , 2011 .

[32]  Olivier Boucher,et al.  Adjustments in the Forcing-Feedback Framework for Understanding Climate Change , 2014 .

[33]  G. Mann,et al.  Influence of oceanic dimethyl sulfide emissions on cloud condensation nuclei concentrations and seasonality over the remote Southern Hemisphere oceans: A global model study , 2008 .

[34]  Kenneth S. Carslaw,et al.  Quantifying sources of inter‐model diversity in the cloud albedo effect , 2015 .

[35]  Giacomo R. DiTullio,et al.  A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude, and month , 1999 .

[36]  N. Bellouin,et al.  Constraining the aerosol influence on cloud fraction , 2016 .

[37]  D. Ceburnis,et al.  Is chlorophyll‐a the best surrogate for organic matter enrichment in submicron primary marine aerosol? , 2013 .

[38]  N. Mahowald,et al.  Global and regional importance of the direct dust-climate feedback , 2018, Nature Communications.

[39]  M. Fasham,et al.  Global fields of sea surface dimethylsulfide predicted from chlorophyll, nutrients and light , 2001 .

[40]  B. Stevens Rethinking the Lower Bound on Aerosol Radiative Forcing , 2015 .

[41]  Michael D. King,et al.  A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements , 2000 .

[42]  P. Daum,et al.  Anthropogenic aerosols: Indirect warming effect from dispersion forcing , 2002, Nature.

[43]  U. Lohmann,et al.  Global indirect aerosol effects: a review , 2004 .

[44]  W. Collins,et al.  An AeroCom Initial Assessment - Optical Properties in Aerosol Component Modules of Global Models , 2005 .

[45]  Michael Schulz,et al.  Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations , 2006 .

[46]  D. W. Johnson,et al.  The Measurement and Parameterization of Effective Radius of Droplets in Warm Stratocumulus Clouds , 1994 .

[47]  Robert Wood,et al.  Natural aerosols explain seasonal and spatial patterns of Southern Ocean cloud albedo , 2015, Science Advances.

[48]  U. Lohmann,et al.  Sensitivity study of the spectral dispersion of the cloud droplet size distribution on the indirect aerosol effect , 2003 .

[49]  Robert Wood,et al.  The effect of solar zenith angle on MODIS cloud optical and microphysical retrievals within marine liquid water clouds , 2014 .

[50]  M. Khairoutdinov,et al.  A New Cloud Physics Parameterization in a Large-Eddy Simulation Model of Marine Stratocumulus , 2000 .

[51]  G. Mann,et al.  Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity , 2014 .

[52]  Jean-Christophe Golaz,et al.  Evaluating cloud tuning in a climate model with satellite observations , 2013 .

[53]  J. Mülmenstädt,et al.  Comment on ``Rethinking the Lower Bound on Aerosol Radiative Forcing'' , 2017 .

[54]  Chris D. Jones,et al.  Effective radiative forcing from historical land use change , 2017, Climate Dynamics.

[55]  L. Lee,et al.  Occurrence of pristine aerosol environments on a polluted planet , 2014, Proceedings of the National Academy of Sciences.

[56]  David R. Doelling,et al.  Toward Optimal Closure of the Earth's Top-of-Atmosphere Radiation Budget , 2009 .

[57]  M. Chin,et al.  Radiative forcing in the ACCMIP historical and future climate simulations , 2013 .

[58]  R. Bennartz,et al.  Global and regional estimates of warm cloud droplet number concentration based on 13 years of AQUA-MODIS observations , 2017 .

[59]  B. DeAngelo,et al.  Bounding the role of black carbon in the climate system: A scientific assessment , 2013 .

[60]  S. Tsunogai,et al.  Seasonal and regional comparison of oceanic and atmospheric dimethylsulfide in the northern North Pacific: Dilution effects on its concentration during winter , 2004 .

[61]  T. Bond,et al.  Light Absorption by Carbonaceous Particles: An Investigative Review , 2006 .

[62]  A. Bodas‐Salcedo,et al.  The impact of equilibrating hemispheric albedos on tropical performance in the HadGEM2‐ES coupled climate model , 2016 .

[63]  D. Easterling,et al.  Observations: Atmosphere and surface , 2013 .

[64]  Jean-Christophe Golaz,et al.  Sensitivity of the Aerosol Indirect Effect to Subgrid Variability in the Cloud Parameterization of the GFDL Atmosphere General Circulation Model AM3 , 2011 .

[65]  T. Andrews,et al.  Recommendations for diagnosing effective radiative forcing from climate models for CMIP6 , 2016 .

[66]  S. Schwartz Are global cloud albedo and climate controlled by marine phytoplankton? , 1988, Nature.

[67]  G. Mann,et al.  The importance of vertical velocity variability for estimates of the indirect aerosol effects , 2013 .

[68]  P. Earnshaw,et al.  The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations , 2011, Geoscientific Model Development.

[69]  P. Webster,et al.  The Curious Nature of the Hemispheric Symmetry of the Earth’s Water and Energy Balances , 2016, Current Climate Change Reports.

[70]  H. Kokkola,et al.  Aerosol–fog interaction and the transition to well-mixed radiation fog , 2017, Atmospheric Chemistry and Physics.

[71]  A. Bodas‐Salcedo,et al.  Critical Southern Ocean climate model biases traced to atmospheric model cloud errors , 2018, Nature Communications.

[72]  Axel Lauer,et al.  © Author(s) 2006. This work is licensed under a Creative Commons License. Atmospheric Chemistry and Physics Analysis and quantification of the diversities of aerosol life cycles , 2022 .

[73]  Chien Wang,et al.  On the representation of aerosol activation and its influence on model-derived estimates of the aerosol indirect effect , 2017, Atmospheric Chemistry and Physics.

[74]  J. Mollard Improving the simulation of carbonaceous aerosol in HadGEM3-UKCA , 2017 .

[75]  Mohamed Zerroukat,et al.  The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations , 2011, Geoscientific Model Development.

[76]  Till Kuhlbrodt,et al.  UK Global Ocean GO6 and GO7: a traceable hierarchy of model resolutions , 2018, Geoscientific Model Development.

[77]  K. Taylor,et al.  Quantifying components of aerosol‐cloud‐radiation interactions in climate models , 2014 .

[78]  I. Totterdell,et al.  Can we trust empirical marine DMS parameterisations within projections of future climate , 2010 .

[79]  T. Andrews Using an AGCM to Diagnose Historical Effective Radiative Forcing and Mechanisms of Recent Decadal Climate Change , 2014 .

[80]  K. A. Bekiashev,et al.  World Meteorological Organization (WMO) , 1981 .

[81]  L. Lee,et al.  Aerosol and physical atmosphere model parameters are both important sources of uncertainty in aerosol ERF , 2018, Atmospheric Chemistry and Physics.

[82]  C. Bretherton,et al.  Clouds and Aerosols , 2013 .

[83]  Jean-Christophe Golaz,et al.  Cloud tuning in a coupled climate model: Impact on 20th century warming , 2013 .

[84]  G. Mann,et al.  A review of natural aerosol interactions and feedbacks within the Earth system , 2010 .

[85]  G. Mann,et al.  Strong constraints on aerosol–cloud interactions from volcanic eruptions , 2017, Nature.

[86]  R. Andres,et al.  A time‐averaged inventory of subaerial volcanic sulfur emissions , 1998 .

[87]  M. Chin,et al.  Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations , 2012 .

[88]  K. Carslaw,et al.  Globally significant oceanic source of organic carbon aerosol , 2008 .

[89]  Andrew S. Jones,et al.  Indirect sulphate aerosol forcing in a climate model with an interactive sulphur cycle , 2001 .

[90]  Robert Pincus,et al.  The Radiative Forcing Model Intercomparison Project (RFMIP): Experimental Protocol for CMIP6 , 2016 .

[91]  Michael Schulz,et al.  Global dust model intercomparison in AeroCom phase I , 2011 .

[92]  Leon D. Rotstayn,et al.  Sensitivity of the first indirect aerosol effect to an increase of cloud droplet spectral dispersion with droplet number concentration , 2003 .

[93]  Veronika Eyring,et al.  Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization , 2015 .

[94]  T. Frölicher,et al.  Sensitivity of radiative forcing, ocean heat uptake, and climate feedback to changes in anthropogenic greenhouse gases and aerosols , 2015 .

[95]  T. Eck,et al.  An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET , 2001 .

[96]  P. Quinn,et al.  The case against climate regulation via oceanic phytoplankton sulphur emissions , 2011, Nature.

[97]  S. Ghan,et al.  Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability , 2016, Proceedings of the National Academy of Sciences.

[98]  G. Mann,et al.  Large contribution of natural aerosols to uncertainty in indirect forcing , 2013, Nature.

[99]  O. Boucher,et al.  Why Does Aerosol Forcing Control Historical Global-Mean Surface Temperature Change in CMIP5 Models? , 2015 .