Systematic design of slow-light photonic waveguides

A pulse-delaying optimization scheme based on topology optimization for transient response of photonic crystal structures (PhCs) is formulated to obtain slow-light devices. The optimization process is started from a qualified W1 PhC waveguide design with group index ng≈40 obtained from a simple Edisonian parameter search. Based on this, the proposed pulse delaying and subsequent pulse restoring strategies yield a design that increases the group index by 75% to ng≈70±10% for an operational full-width at half-maximum (FWHM) bandwidth BFWHM=6 nm, and simultaneously minimizes interface penalty losses between the access ridge and the W1 PhC waveguide. To retain periodicity and symmetry, the active design set is limited to the in-/outlet region and a distributed supercell, and manufacturability is further enhanced by density filtering techniques combined with material phase projections.

[1]  Ole Sigmund,et al.  Topology optimization for transient wave propagation problems in one dimension , 2008 .

[2]  S. Harris,et al.  Light speed reduction to 17 metres per second in an ultracold atomic gas , 1999, Nature.

[3]  W. R. Frei,et al.  Topology optimization of a photonic crystal waveguide termination to maximize directional emission , 2005 .

[4]  Thomas F. Krauss Slow light in photonic crystal waveguides , 2007 .

[5]  T. Krauss,et al.  Real-space observation of ultraslow light in photonic crystal waveguides. , 2005, Physical review letters.

[6]  Jakob S. Jensen,et al.  Topology optimization and fabrication of photonic crystal structures. , 2004, Optics express.

[7]  Boyan Stefanov Lazarov,et al.  Topology optimization of pulse shaping filters using the Hilbert transform envelope extraction , 2011 .

[8]  O. Sigmund,et al.  Tailoring dispersion properties of photonic crystal waveguides by topology optimization , 2007 .

[9]  O. Sigmund Morphology-based black and white filters for topology optimization , 2007 .

[10]  C. Martijn de Sterke,et al.  Bragg solitons in the nonlinear Schrödinger limit: experiment and theory , 1999 .

[11]  Jakob S. Jensen,et al.  Topology optimization of photonic crystal structures: a high-bandwidth low-loss T-junction waveguide , 2005 .

[12]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[13]  Eli Yablonovitch,et al.  Inverse Problem Techniques for the Design of Photonic Crystals (INVITED) , 2004 .

[14]  P. I. Borel,et al.  Topology optimised broadband photonic crystal Y-splitter , 2005 .

[15]  H. Hamann,et al.  Active control of slow light on a chip with photonic crystal waveguides , 2005, Nature.

[16]  Xavier Letartre,et al.  Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes , 2001 .

[17]  Thomas F. Krauss,et al.  Dispersion engineered slow light in photonic crystals: a comparison , 2010 .

[18]  Bend,et al.  Topology design and fabrication of an efficient double 90° photonic crystal waveguide , 2009 .

[19]  C. Peucheret,et al.  Direct experimental and numerical determination of extremely high group indices in photonic crystal waveguides. , 2005, Optics express.

[20]  Jakob S. Jensen,et al.  Robust topology optimization of photonic crystal waveguides with tailored dispersion properties , 2011 .

[21]  O. SIAMJ.,et al.  A CLASS OF GLOBALLY CONVERGENT OPTIMIZATION METHODS BASED ON CONSERVATIVE CONVEX SEPARABLE APPROXIMATIONS∗ , 2002 .

[22]  Yoshimasa Sugimoto,et al.  Observation of small group velocity in two-dimensional AlGaAs-based photonic crystal slabs , 2002 .

[23]  G. Diener,et al.  Superluminal group velocities and information transfer , 1996 .

[24]  Chun Jiang,et al.  Wideband ultralow high-order-dispersion photonic crystal slow-light waveguide , 2011 .

[25]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[26]  R.S. Tucker,et al.  Slow-light optical buffers: capabilities and fundamental limitations , 2005, Journal of Lightwave Technology.

[27]  T. Krauss,et al.  Transmission properties of two-dimensional photonic crystal channel waveguides , 2002 .

[28]  Jianming Jin,et al.  Finite Element Analysis of Antennas and Arrays , 2008 .

[29]  Ole Sigmund,et al.  Systematic design of phononic band–gap materials and structures by topology optimization , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[30]  Steven G. Johnson,et al.  Meep: A flexible free-software package for electromagnetic simulations by the FDTD method , 2010, Comput. Phys. Commun..

[31]  Ole Sigmund,et al.  On projection methods, convergence and robust formulations in topology optimization , 2011, Structural and Multidisciplinary Optimization.

[32]  T. Asano,et al.  High-Q photonic nanocavity in a two-dimensional photonic crystal , 2003, Nature.

[33]  A. Harpoth,et al.  Topology design and fabrication of an efficient double 90/spl deg/ photonic Crystal waveguide bend , 2005, IEEE Photonics Technology Letters.

[34]  Ole Sigmund,et al.  Manufacturing tolerant topology optimization , 2009 .

[35]  Peter Ingo Borel,et al.  Broadband photonic crystal waveguide 60° bend obtained utilizing topology optimization , 2004 .

[36]  Toshihiko Baba,et al.  Slow light in photonic crystals , 2008 .

[37]  D. Tortorelli,et al.  Design sensitivity analysis: Overview and review , 1994 .

[38]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[39]  Jakob S. Jensen,et al.  Systematic design of photonic crystal structures using topology optimization: Low-loss waveguide bends , 2004 .

[40]  Ole Sigmund,et al.  Design of one-dimensional optical pulse-shaping filters by time-domain topology optimization , 2009 .

[41]  T. Krauss,et al.  Observation of pulse compression in photonic Crystal coupled cavity waveguides , 2004, Journal of Lightwave Technology.

[42]  M. Notomi,et al.  Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. , 2001, Physical review letters.

[43]  J. D. Joannopoulos,et al.  Enhancement of nonlinear effects using photonic crystals , 2004, Nature materials.

[44]  J. Bell,et al.  Experiment and Theory , 1968 .

[45]  M. Lukin,et al.  Controlling photons using electromagnetically induced transparency , 2001, Nature.

[46]  K. Ohtaka Energy band of photons and low-energy photon diffraction , 1979 .

[47]  Edward S. Fry,et al.  ULTRASLOW GROUP VELOCITY AND ENHANCED NONLINEAR OPTICAL EFFECTS IN A COHERENTLY DRIVEN HOT ATOMIC GAS , 1999, quant-ph/9904031.

[48]  Ole Sigmund,et al.  Topology optimization for transient response of photonic crystal structures , 2010 .

[49]  Jacob Fage-Pedersen,et al.  Photonic crystal waveguides with semi-slow light and tailored dispersion properties. , 2006, Optics express.

[50]  Steven G. Johnson,et al.  Photonic-crystal slow-light enhancement of nonlinear phase sensitivity , 2002 .

[51]  Liam O'Faolain,et al.  Dependence of extrinsic loss on group velocity in photonic crystal waveguides. , 2007, Optics express.

[52]  Ole Sigmund,et al.  Topology optimization for nano‐photonics , 2011 .

[53]  Takao Handa,et al.  Experiment and Theory (1) , 1996 .

[54]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[55]  Thomas F. Krauss,et al.  Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths , 1996, Nature.

[56]  R. E. Slusher,et al.  Optical delay lines based on optical filters , 2001 .