16 Rasch Models
暂无分享,去创建一个
[1] E. Lehmann. Testing Statistical Hypotheses , 1960 .
[2] Dylan S. Small,et al. Exact tests for the rasch model via sequential importance sampling , 2005 .
[3] H. E. Slaught. THE CARUS MATHEMATICAL MONOGRAPHS , 1923 .
[4] T. A. Warm. Weighted likelihood estimation of ability in item response theory , 1989 .
[5] Paul De Boeck,et al. Descriptive and explanatory item response models , 2004 .
[6] J. Falmagne. Elements of psychophysical theory , 1985 .
[7] Cees A. W. Glas,et al. The derivation of some tests for the rasch model from the multinomial distribution , 1988 .
[8] J. Rost. The Growing Family of Rasch Models , 2001 .
[9] K. C. Klauer. An exact and optimal standardized person test for assessing consistency with the rasch model , 1991 .
[10] Melvin R. Novick,et al. Some latent train models and their use in inferring an examinee's ability , 1966 .
[11] C. Spiel,et al. Item Response Models for Assessing Change in Dichotomous Items , 1998 .
[12] W. Kempf. Dynamic Models for the Measurement of "Traits" in Social Behavior , 1977 .
[13] Shelby J. Haberman,et al. Maximum Likelihood Estimates in Exponential Response Models , 1977 .
[14] Susan E. Whitely,et al. Information Structure for Geometric Analogies: A Test Theory Approach , 1981 .
[15] H. L. Le Roy,et al. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .
[16] H. Müller,et al. A rasch model for continuous ratings , 1987 .
[17] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[18] I. W. Molenaar,et al. Rasch models: foundations, recent developments and applications , 1995 .
[19] Ivo W. Molenaar,et al. Estimation of Item Parameters , 1995 .
[20] N. L. Johnson,et al. Distributions in Statistics: Discrete Distributions. , 1970 .
[21] Mark Wilson,et al. A framework for item response models , 2004 .
[22] Gerhard Tutz. Latent Trait-Modelle für ordinale Beobachtungen , 1989 .
[23] P. Boeck,et al. Explanatory item response models : a generalized linear and nonlinear approach , 2004 .
[24] Anne Boomsma,et al. Essays on Item Response Theory , 2000 .
[25] G. H. Fischer,et al. Remarks on “equivalent linear logistic test models” by Bechger, Verstralen, and Verhelst (2002) , 2004 .
[26] Erling B. Andersen,et al. The Numerical Solution of a Set of Conditional Estimation Equations , 1972 .
[27] G. Masters. A rasch model for partial credit scoring , 1982 .
[28] R. Hambleton,et al. Handbook of Modern Item Response Theory , 1997 .
[29] G. H. Fischer,et al. Applying the principles of specific objectivity and of generalizability to the measurement of change , 1987 .
[30] Paul De Boeck,et al. The Random Weights Linear Logistic Test Model , 2002 .
[31] E. B. Andersen,et al. A goodness of fit test for the rasch model , 1973 .
[32] Gerhard H. Fischer,et al. A measurement model for the effect of mass-media , 1972 .
[33] H. Hoijtink,et al. Statistical inference based on latent ability estimates , 1996 .
[34] K. Liang. On information and ancillarity in the presence of a nuisance parameter , 1983 .
[35] Erling B. Andersen,et al. Polytomous Rasch Models and their Estimation , 1995 .
[36] Gerhard H. Fischer,et al. Linear Logistic Models for Change , 1995 .
[37] Sun-Joo Cho,et al. Explanatory Item Response Models , 2004 .
[38] Ivo Ponocny,et al. Nonparametric goodness-of-fit tests for the rasch model , 2001 .
[39] Frederic M. Lord,et al. Unbiased estimators of ability parameters, of their variance, and of their parallel-forms reliability , 1983 .
[40] M. Liou,et al. Constructing the exact significance level for a person fit statistic , 1992 .
[41] E. B. Andersen,et al. Asymptotic Properties of Conditional Maximum‐Likelihood Estimators , 1970 .
[42] B. Lindsay,et al. Semiparametric Estimation in the Rasch Model and Related Exponential Response Models, Including a Simple Latent Class Model for Item Analysis , 1991 .
[43] G. H. Fischer,et al. Gain Scores Revisited Under an IRT Perspective , 2001 .
[44] P. Boeck,et al. An item response model with internal restrictions on item difficulty , 1998 .
[45] G. H. Fischer,et al. Unidimensional Linear Logistic Rasch Models , 1997 .
[46] T. Eggen,et al. On the loss of information in conditional maximum likelihood estimation of item parameters , 2000 .
[47] J. Linacre,et al. Many-facet Rasch measurement , 1994 .
[48] Jürgen Rost,et al. Rasch Models in Latent Classes: An Integration of Two Approaches to Item Analysis , 1990 .
[49] Raymond J. Adams,et al. The Multidimensional Random Coefficients Multinomial Logit Model , 1997 .
[50] Francis Tuerlinckx,et al. A nonlinear mixed model framework for item response theory. , 2003, Psychological methods.
[51] Geert Molenberghs,et al. Estimation and software , 2004 .
[52] Cornelis A.W. Glas,et al. A dynamic generalization of the Rasch model , 1993 .
[53] Erling B. Andersen,et al. Discrete Statistical Models with Social Science Applications. , 1980 .
[54] E. B. Andersen,et al. The Life of Georg Rasch as a Mathematician and as a Statistician , 2001 .
[55] K. C. Klauer. Exact and best confidence intervals for the ability parameter of the Rasch model , 1991 .
[56] Gerhard H. Fischer,et al. Some neglected problems in IRT , 1995 .
[57] L. R. Ford. Solution of a Ranking Problem from Binary Comparisons , 1957 .
[58] W. Kempf. Probabilistische Modelle experimentalpsychologischer Versuchssituationen : Eine vollständige multifaktorielle Verallgemeinerung des mehrdimensionalen Testmodells von Rasch und ihre Anwendung in der experimentellen Psychologie , 1972 .
[59] H. C. Micko. A psychological scale for reaction time measurement , 1969 .
[60] Gerhard H. Fischer,et al. On the existence and uniqueness of maximum-likelihood estimates in the Rasch model , 1981 .
[61] J. Rost. Logistic Mixture Models , 1997 .
[62] P. Mielke. Goodman–Kruskal Tau and Gamma , 2006 .
[63] Calyampudi R. Rao,et al. Linear Statistical Inference and Its Applications. , 1975 .
[64] Gerhard H. Fischer,et al. "Contributions to Mathematical Psychology, Psychometrics, and Methodology" , 1993 .
[65] M. Jacobsen. Existence and unicity of MLEs in discrete exponential family distributions , 1989 .
[66] Brian W. Junker,et al. On the Interplay Between Nonparametric and Parametric IRT, with Some Thoughts About the Future , 2001 .
[67] E. B. Andersen,et al. Latent trait models , 1983 .
[68] Dorothy T. Thayer,et al. DIFFERENTIAL ITEM FUNCTIONING AND THE MANTEL‐HAENSZEL PROCEDURE , 1986 .
[69] Johann Pfanzagl,et al. Theory of measurement , 1970 .
[70] Hartmann Scheiblechner. Nonparametric IRT: Testing the bi-isotonicity of isotonic probabilistic models (ISOP) , 2003 .
[71] Dean Follmann,et al. Consistent estimation in the rasch model based on nonparametric margins , 1988 .
[72] J. Pfanzagl. On the identifiability of structural parameters in mixtures: applications to psychological tests , 1994 .
[73] Norman Verhelst,et al. Maximum Likelihood Estimation in Generalized Rasch Models , 1986 .
[74] N. Verhelst,et al. Identifiability of nonlinear logistic test models , 2001 .
[75] H. A. David,et al. The method of paired comparisons , 1966 .
[76] Klaas Sijtsma,et al. Progress in NIRT analysis of polytomous item scores : Dilemmas and practical solutions , 2001 .
[77] Stanley Wasserman,et al. Mathematical Models for Social Psychology. , 1979 .
[78] Matthias von Davier,et al. Mixture Distribution Rasch Models , 1995 .
[79] Ralph A. Bradley,et al. 14 Paired comparisons: Some basic procedures and examples , 1984, Nonparametric Methods.
[80] Ralph A. Bradley,et al. Treatment contrasts in paired comparisons: convergence of a basic iterative scheme for estimation , 1977 .
[81] Geert Molenberghs,et al. An Introduction to (Generalized (Non)Linear Mixed Models , 2004 .
[82] Cees A. W. Glas,et al. Testing the Rasch Model , 1995 .
[83] G. Rasch. On General Laws and the Meaning of Measurement in Psychology , 1961 .
[84] Norman,et al. Structural Models: An Introduction to the Theory of Directed Graphs. , 1966 .
[85] E. Degreef,et al. Trends in mathematical psychology , 1984 .
[86] Erling B. Andersen,et al. Sufficient statistics and latent trait models , 1977 .
[87] Paul Jansen,et al. A New Derivation of the Rasch Model , 1984 .
[88] Gerhard H. Fischer,et al. Some Applications of Logistic Latent Trait Models with Linear Constraints on the Parameters , 1982 .
[89] D. Andrich. A rating formulation for ordered response categories , 1978 .
[90] Albert Noack. A Class of Random Variables with Discrete Distributions , 1950 .
[91] William Stout,et al. A New Item Response Theory Modeling Approach with Applications to Unidimensionality Assessment and Ability Estimation , 1990 .
[92] M. Liou. Exact Person Tests for Assessing Model-Data Fit in the Rasch Model. , 1993 .
[93] W. Kempf. Probabilistische Modelle experimentalpsychologischer Versuchssituationen , 1972 .
[94] Susan E. Embretson,et al. Generating items during testing: Psychometric issues and models , 1999 .
[95] Robert J. Mislevy,et al. BILOG 3 : item analysis and test scoring with binary logistic models , 1990 .
[96] Erling B. Andersen,et al. Conditional Inference and Models for Measuring , 1974 .
[97] H. O. Lancaster,et al. Significance Tests in Discrete Distributions , 1961 .
[98] J. Wolfowitz,et al. Introduction to the Theory of Statistics. , 1951 .
[99] Mm. Liabre. Standard Progressive Matrices , 1984 .
[100] E. B. Andersen,et al. CONDITIONAL INFERENCE FOR MULTIPLE‐CHOICE QUESTIONNAIRES , 1973 .
[101] Cornelis A.W. Glas,et al. Differential Item Functioning Depending on General Covariates , 2001 .
[102] Aeilko H. Zwinderman,et al. Pairwise Parameter Estimation in Rasch Models , 1995 .
[103] Georg Rasch,et al. Probabilistic Models for Some Intelligence and Attainment Tests , 1981, The SAGE Encyclopedia of Research Design.
[104] G. Molenberghs,et al. Models for Discrete Longitudinal Data , 2005 .
[105] Anton K. Formann,et al. Constrained latent class models: Theory and applications , 1985 .
[106] J. F. C. Kingman,et al. Information and Exponential Families in Statistical Theory , 1980 .
[107] J. Aczél,et al. Lectures on Functional Equations and Their Applications , 1968 .
[108] L. Hedges,et al. Statistical Methods for Meta-Analysis , 1987 .
[109] N. Verhelst,et al. Equivalent linear logistic test models , 2002 .
[110] Anton K. Formann,et al. Linear Logistic Latent Class Analysis , 1982 .
[111] R. Mislevy. Exploiting Auxiliary Information About Items in the Estimation of Rasch Item Difficulty Parameters , 1987 .
[112] Yuguo Chen,et al. Sequential Monte Carlo Methods for Statistical Analysis of Tables , 2005 .
[113] L. F. Hornke,et al. Rule-Based Item Bank Construction and Evaluation Within the Linear Logistic Framework , 1986 .
[114] Noel A Cressie,et al. Characterizing the manifest probabilities of latent trait models , 1983 .
[115] Thorsten Meiser,et al. Loglinear Rasch models for the analysis of stability and change , 1996 .
[116] Norbert K Tanzer,et al. Cross-Cultural Validation of Item Complexity in a LLTM-Calibrated Spatial Ability Test , 1995 .
[117] Paul F. Lazarsfeld,et al. Latent Structure Analysis. , 1969 .
[118] J. Besag,et al. Generalized Monte Carlo significance tests , 1989 .
[119] David Thissen,et al. Marginal maximum likelihood estimation for the one-parameter logistic model , 1982 .
[120] Anton K. Formann,et al. Linear Logistic Latent Class Analysis and the Rasch Model , 1995 .
[121] Jaap Van Brakel,et al. Foundations of measurement , 1983 .
[122] E. Zermelo. Die Berechnung der Turnier-Ergebnisse als ein Maximumproblem der Wahrscheinlichkeitsrechnung , 1929 .
[123] G. H. Fischer,et al. An extension of the partial credit model with an application to the measurement of change , 1994 .
[124] Cees A. W. Glas,et al. The One Parameter Logistic Model , 1995 .
[125] Klaas Sijtsma,et al. Methodology Review: Nonparametric IRT Approaches to the Analysis of Dichotomous Item Scores , 1998 .
[126] G. H. Fischer,et al. Logistic latent trait models with linear constraints , 1983 .
[127] L. A. Goodman,et al. Measures of association for cross classifications , 1979 .
[128] Robert J. Mislevy,et al. Modeling item responses when different subjects employ different solution strategies , 1990 .
[129] T. Snijders. Enumeration and simulation methods for 0–1 matrices with given marginals , 1991 .
[130] R. D. Bock,et al. Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm , 1981 .
[131] Herbert Hoijtink,et al. The many null distributions of person fit indices , 1990 .
[132] Ivo Poncny. Exact person fit indexes for the rasch model for arbitrary alternatives , 2000 .
[133] A. Hamerle. [Foundations of measurement in latent trait models (author's transl)]. , 1979, Archiv fur Psychologie.
[134] David R. Cox. The analysis of binary data , 1970 .
[135] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[136] M. R. Novick,et al. Statistical Theories of Mental Test Scores. , 1971 .
[137] Gerhard H. Fischer,et al. Derivations of the Rasch Model , 1995 .
[138] Reinhard Suck,et al. Progress in mathematical psychology , 1987 .
[139] Tue Tjur,et al. A Connection between Rasch's Item Analysis Model and a Multiplicative Poisson Model , 1982 .
[140] D. Rubin,et al. Multiple Imputation for Nonresponse in Surveys , 1989 .
[141] F.J.R. van de Vijver,et al. Systematizing the Item Content in Test Design , 1988 .
[142] J. Pfanzagl. A case of asymptotic equivalence between conditional and marginal maximum likelihood estimators , 1993 .
[143] Gerhard H. Fischer,et al. The Linear Logistic Test Model , 1995 .
[144] H. Irtel. The Uniqueness Structure of Simple Latent Trait Models , 1994 .
[145] Jeffrey D. Hart,et al. Nonparametric Smoothing and Lack-Of-Fit Tests , 1997 .
[146] N. D. Verhelst,et al. Extensions of the partial credit model , 1989 .
[147] Gerhard H. Fischer,et al. The Precision of Gain Scores Under an Item Response Theory Perspective: A Comparison of Asymptotic and Exact Conditional Inference About Change , 2003 .
[148] G. H. Fischer,et al. The linear logistic test model as an instrument in educational research , 1973 .
[149] E. Muraki. A Generalized Partial Credit Model: Application of an EM Algorithm , 1992 .
[150] J. Pfanzagl. On Item Parameter Estimation in Certain Latent Trait Models , 1994 .
[151] H. Kelderman. The Polytomous Rasch Model within the Class of Generalized Linear Symmetry Models , 1995 .
[152] Benjamin D. Wright,et al. A Procedure for Sample-Free Item Analysis , 1969 .
[153] H. Irtel. An extension of the concept of specific objectivity , 1995 .