16 Rasch Models

Publisher Summary This chapter begins with the history of the Rasch models (RM) and also discusses some basic concepts and properties of the RM. According to Georg Rasch, the RM should have the following property: a nontrivial likelihood function should exist, which is a function of the item parameters but is independent of the person parameters, and is thus serviceable for a specifically objective comparison of the items. This requirement is satisfied by the conditional likelihood of the data, given the raw scores of all testees. Based on the definition of the RM, this chapter provides a number of useful formulas, both to illustrate the characteristic properties of the RM and to free the derivation and discussion of estimation equations and tests of fit from too many elementary algebraic manipulations. It also discusses the characterizations and scale properties of the RM. Three essentially different approaches to deriving, and hence justifying the choice of, the RM have been taken: (a) postulating sufficient statistics for the person parameter, (b) assuming identifiability of parameters within a marginal maximum likelihood framework, and (c) postulating specific objectivity (SO) and the feasibility of conditional inference as general methodological principles.

[1]  E. Lehmann Testing Statistical Hypotheses , 1960 .

[2]  Dylan S. Small,et al.  Exact tests for the rasch model via sequential importance sampling , 2005 .

[3]  H. E. Slaught THE CARUS MATHEMATICAL MONOGRAPHS , 1923 .

[4]  T. A. Warm Weighted likelihood estimation of ability in item response theory , 1989 .

[5]  Paul De Boeck,et al.  Descriptive and explanatory item response models , 2004 .

[6]  J. Falmagne Elements of psychophysical theory , 1985 .

[7]  Cees A. W. Glas,et al.  The derivation of some tests for the rasch model from the multinomial distribution , 1988 .

[8]  J. Rost The Growing Family of Rasch Models , 2001 .

[9]  K. C. Klauer An exact and optimal standardized person test for assessing consistency with the rasch model , 1991 .

[10]  Melvin R. Novick,et al.  Some latent train models and their use in inferring an examinee's ability , 1966 .

[11]  C. Spiel,et al.  Item Response Models for Assessing Change in Dichotomous Items , 1998 .

[12]  W. Kempf Dynamic Models for the Measurement of "Traits" in Social Behavior , 1977 .

[13]  Shelby J. Haberman,et al.  Maximum Likelihood Estimates in Exponential Response Models , 1977 .

[14]  Susan E. Whitely,et al.  Information Structure for Geometric Analogies: A Test Theory Approach , 1981 .

[15]  H. L. Le Roy,et al.  Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .

[16]  H. Müller,et al.  A rasch model for continuous ratings , 1987 .

[17]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[18]  I. W. Molenaar,et al.  Rasch models: foundations, recent developments and applications , 1995 .

[19]  Ivo W. Molenaar,et al.  Estimation of Item Parameters , 1995 .

[20]  N. L. Johnson,et al.  Distributions in Statistics: Discrete Distributions. , 1970 .

[21]  Mark Wilson,et al.  A framework for item response models , 2004 .

[22]  Gerhard Tutz Latent Trait-Modelle für ordinale Beobachtungen , 1989 .

[23]  P. Boeck,et al.  Explanatory item response models : a generalized linear and nonlinear approach , 2004 .

[24]  Anne Boomsma,et al.  Essays on Item Response Theory , 2000 .

[25]  G. H. Fischer,et al.  Remarks on “equivalent linear logistic test models” by Bechger, Verstralen, and Verhelst (2002) , 2004 .

[26]  Erling B. Andersen,et al.  The Numerical Solution of a Set of Conditional Estimation Equations , 1972 .

[27]  G. Masters A rasch model for partial credit scoring , 1982 .

[28]  R. Hambleton,et al.  Handbook of Modern Item Response Theory , 1997 .

[29]  G. H. Fischer,et al.  Applying the principles of specific objectivity and of generalizability to the measurement of change , 1987 .

[30]  Paul De Boeck,et al.  The Random Weights Linear Logistic Test Model , 2002 .

[31]  E. B. Andersen,et al.  A goodness of fit test for the rasch model , 1973 .

[32]  Gerhard H. Fischer,et al.  A measurement model for the effect of mass-media , 1972 .

[33]  H. Hoijtink,et al.  Statistical inference based on latent ability estimates , 1996 .

[34]  K. Liang On information and ancillarity in the presence of a nuisance parameter , 1983 .

[35]  Erling B. Andersen,et al.  Polytomous Rasch Models and their Estimation , 1995 .

[36]  Gerhard H. Fischer,et al.  Linear Logistic Models for Change , 1995 .

[37]  Sun-Joo Cho,et al.  Explanatory Item Response Models , 2004 .

[38]  Ivo Ponocny,et al.  Nonparametric goodness-of-fit tests for the rasch model , 2001 .

[39]  Frederic M. Lord,et al.  Unbiased estimators of ability parameters, of their variance, and of their parallel-forms reliability , 1983 .

[40]  M. Liou,et al.  Constructing the exact significance level for a person fit statistic , 1992 .

[41]  E. B. Andersen,et al.  Asymptotic Properties of Conditional Maximum‐Likelihood Estimators , 1970 .

[42]  B. Lindsay,et al.  Semiparametric Estimation in the Rasch Model and Related Exponential Response Models, Including a Simple Latent Class Model for Item Analysis , 1991 .

[43]  G. H. Fischer,et al.  Gain Scores Revisited Under an IRT Perspective , 2001 .

[44]  P. Boeck,et al.  An item response model with internal restrictions on item difficulty , 1998 .

[45]  G. H. Fischer,et al.  Unidimensional Linear Logistic Rasch Models , 1997 .

[46]  T. Eggen,et al.  On the loss of information in conditional maximum likelihood estimation of item parameters , 2000 .

[47]  J. Linacre,et al.  Many-facet Rasch measurement , 1994 .

[48]  Jürgen Rost,et al.  Rasch Models in Latent Classes: An Integration of Two Approaches to Item Analysis , 1990 .

[49]  Raymond J. Adams,et al.  The Multidimensional Random Coefficients Multinomial Logit Model , 1997 .

[50]  Francis Tuerlinckx,et al.  A nonlinear mixed model framework for item response theory. , 2003, Psychological methods.

[51]  Geert Molenberghs,et al.  Estimation and software , 2004 .

[52]  Cornelis A.W. Glas,et al.  A dynamic generalization of the Rasch model , 1993 .

[53]  Erling B. Andersen,et al.  Discrete Statistical Models with Social Science Applications. , 1980 .

[54]  E. B. Andersen,et al.  The Life of Georg Rasch as a Mathematician and as a Statistician , 2001 .

[55]  K. C. Klauer Exact and best confidence intervals for the ability parameter of the Rasch model , 1991 .

[56]  Gerhard H. Fischer,et al.  Some neglected problems in IRT , 1995 .

[57]  L. R. Ford Solution of a Ranking Problem from Binary Comparisons , 1957 .

[58]  W. Kempf Probabilistische Modelle experimentalpsychologischer Versuchssituationen : Eine vollständige multifaktorielle Verallgemeinerung des mehrdimensionalen Testmodells von Rasch und ihre Anwendung in der experimentellen Psychologie , 1972 .

[59]  H. C. Micko A psychological scale for reaction time measurement , 1969 .

[60]  Gerhard H. Fischer,et al.  On the existence and uniqueness of maximum-likelihood estimates in the Rasch model , 1981 .

[61]  J. Rost Logistic Mixture Models , 1997 .

[62]  P. Mielke Goodman–Kruskal Tau and Gamma , 2006 .

[63]  Calyampudi R. Rao,et al.  Linear Statistical Inference and Its Applications. , 1975 .

[64]  Gerhard H. Fischer,et al.  "Contributions to Mathematical Psychology, Psychometrics, and Methodology" , 1993 .

[65]  M. Jacobsen Existence and unicity of MLEs in discrete exponential family distributions , 1989 .

[66]  Brian W. Junker,et al.  On the Interplay Between Nonparametric and Parametric IRT, with Some Thoughts About the Future , 2001 .

[67]  E. B. Andersen,et al.  Latent trait models , 1983 .

[68]  Dorothy T. Thayer,et al.  DIFFERENTIAL ITEM FUNCTIONING AND THE MANTEL‐HAENSZEL PROCEDURE , 1986 .

[69]  Johann Pfanzagl,et al.  Theory of measurement , 1970 .

[70]  Hartmann Scheiblechner Nonparametric IRT: Testing the bi-isotonicity of isotonic probabilistic models (ISOP) , 2003 .

[71]  Dean Follmann,et al.  Consistent estimation in the rasch model based on nonparametric margins , 1988 .

[72]  J. Pfanzagl On the identifiability of structural parameters in mixtures: applications to psychological tests , 1994 .

[73]  Norman Verhelst,et al.  Maximum Likelihood Estimation in Generalized Rasch Models , 1986 .

[74]  N. Verhelst,et al.  Identifiability of nonlinear logistic test models , 2001 .

[75]  H. A. David,et al.  The method of paired comparisons , 1966 .

[76]  Klaas Sijtsma,et al.  Progress in NIRT analysis of polytomous item scores : Dilemmas and practical solutions , 2001 .

[77]  Stanley Wasserman,et al.  Mathematical Models for Social Psychology. , 1979 .

[78]  Matthias von Davier,et al.  Mixture Distribution Rasch Models , 1995 .

[79]  Ralph A. Bradley,et al.  14 Paired comparisons: Some basic procedures and examples , 1984, Nonparametric Methods.

[80]  Ralph A. Bradley,et al.  Treatment contrasts in paired comparisons: convergence of a basic iterative scheme for estimation , 1977 .

[81]  Geert Molenberghs,et al.  An Introduction to (Generalized (Non)Linear Mixed Models , 2004 .

[82]  Cees A. W. Glas,et al.  Testing the Rasch Model , 1995 .

[83]  G. Rasch On General Laws and the Meaning of Measurement in Psychology , 1961 .

[84]  Norman,et al.  Structural Models: An Introduction to the Theory of Directed Graphs. , 1966 .

[85]  E. Degreef,et al.  Trends in mathematical psychology , 1984 .

[86]  Erling B. Andersen,et al.  Sufficient statistics and latent trait models , 1977 .

[87]  Paul Jansen,et al.  A New Derivation of the Rasch Model , 1984 .

[88]  Gerhard H. Fischer,et al.  Some Applications of Logistic Latent Trait Models with Linear Constraints on the Parameters , 1982 .

[89]  D. Andrich A rating formulation for ordered response categories , 1978 .

[90]  Albert Noack A Class of Random Variables with Discrete Distributions , 1950 .

[91]  William Stout,et al.  A New Item Response Theory Modeling Approach with Applications to Unidimensionality Assessment and Ability Estimation , 1990 .

[92]  M. Liou Exact Person Tests for Assessing Model-Data Fit in the Rasch Model. , 1993 .

[93]  W. Kempf Probabilistische Modelle experimentalpsychologischer Versuchssituationen , 1972 .

[94]  Susan E. Embretson,et al.  Generating items during testing: Psychometric issues and models , 1999 .

[95]  Robert J. Mislevy,et al.  BILOG 3 : item analysis and test scoring with binary logistic models , 1990 .

[96]  Erling B. Andersen,et al.  Conditional Inference and Models for Measuring , 1974 .

[97]  H. O. Lancaster,et al.  Significance Tests in Discrete Distributions , 1961 .

[98]  J. Wolfowitz,et al.  Introduction to the Theory of Statistics. , 1951 .

[99]  Mm. Liabre Standard Progressive Matrices , 1984 .

[100]  E. B. Andersen,et al.  CONDITIONAL INFERENCE FOR MULTIPLE‐CHOICE QUESTIONNAIRES , 1973 .

[101]  Cornelis A.W. Glas,et al.  Differential Item Functioning Depending on General Covariates , 2001 .

[102]  Aeilko H. Zwinderman,et al.  Pairwise Parameter Estimation in Rasch Models , 1995 .

[103]  Georg Rasch,et al.  Probabilistic Models for Some Intelligence and Attainment Tests , 1981, The SAGE Encyclopedia of Research Design.

[104]  G. Molenberghs,et al.  Models for Discrete Longitudinal Data , 2005 .

[105]  Anton K. Formann,et al.  Constrained latent class models: Theory and applications , 1985 .

[106]  J. F. C. Kingman,et al.  Information and Exponential Families in Statistical Theory , 1980 .

[107]  J. Aczél,et al.  Lectures on Functional Equations and Their Applications , 1968 .

[108]  L. Hedges,et al.  Statistical Methods for Meta-Analysis , 1987 .

[109]  N. Verhelst,et al.  Equivalent linear logistic test models , 2002 .

[110]  Anton K. Formann,et al.  Linear Logistic Latent Class Analysis , 1982 .

[111]  R. Mislevy Exploiting Auxiliary Information About Items in the Estimation of Rasch Item Difficulty Parameters , 1987 .

[112]  Yuguo Chen,et al.  Sequential Monte Carlo Methods for Statistical Analysis of Tables , 2005 .

[113]  L. F. Hornke,et al.  Rule-Based Item Bank Construction and Evaluation Within the Linear Logistic Framework , 1986 .

[114]  Noel A Cressie,et al.  Characterizing the manifest probabilities of latent trait models , 1983 .

[115]  Thorsten Meiser,et al.  Loglinear Rasch models for the analysis of stability and change , 1996 .

[116]  Norbert K Tanzer,et al.  Cross-Cultural Validation of Item Complexity in a LLTM-Calibrated Spatial Ability Test , 1995 .

[117]  Paul F. Lazarsfeld,et al.  Latent Structure Analysis. , 1969 .

[118]  J. Besag,et al.  Generalized Monte Carlo significance tests , 1989 .

[119]  David Thissen,et al.  Marginal maximum likelihood estimation for the one-parameter logistic model , 1982 .

[120]  Anton K. Formann,et al.  Linear Logistic Latent Class Analysis and the Rasch Model , 1995 .

[121]  Jaap Van Brakel,et al.  Foundations of measurement , 1983 .

[122]  E. Zermelo Die Berechnung der Turnier-Ergebnisse als ein Maximumproblem der Wahrscheinlichkeitsrechnung , 1929 .

[123]  G. H. Fischer,et al.  An extension of the partial credit model with an application to the measurement of change , 1994 .

[124]  Cees A. W. Glas,et al.  The One Parameter Logistic Model , 1995 .

[125]  Klaas Sijtsma,et al.  Methodology Review: Nonparametric IRT Approaches to the Analysis of Dichotomous Item Scores , 1998 .

[126]  G. H. Fischer,et al.  Logistic latent trait models with linear constraints , 1983 .

[127]  L. A. Goodman,et al.  Measures of association for cross classifications , 1979 .

[128]  Robert J. Mislevy,et al.  Modeling item responses when different subjects employ different solution strategies , 1990 .

[129]  T. Snijders Enumeration and simulation methods for 0–1 matrices with given marginals , 1991 .

[130]  R. D. Bock,et al.  Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm , 1981 .

[131]  Herbert Hoijtink,et al.  The many null distributions of person fit indices , 1990 .

[132]  Ivo Poncny Exact person fit indexes for the rasch model for arbitrary alternatives , 2000 .

[133]  A. Hamerle [Foundations of measurement in latent trait models (author's transl)]. , 1979, Archiv fur Psychologie.

[134]  David R. Cox The analysis of binary data , 1970 .

[135]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[136]  M. R. Novick,et al.  Statistical Theories of Mental Test Scores. , 1971 .

[137]  Gerhard H. Fischer,et al.  Derivations of the Rasch Model , 1995 .

[138]  Reinhard Suck,et al.  Progress in mathematical psychology , 1987 .

[139]  Tue Tjur,et al.  A Connection between Rasch's Item Analysis Model and a Multiplicative Poisson Model , 1982 .

[140]  D. Rubin,et al.  Multiple Imputation for Nonresponse in Surveys , 1989 .

[141]  F.J.R. van de Vijver,et al.  Systematizing the Item Content in Test Design , 1988 .

[142]  J. Pfanzagl A case of asymptotic equivalence between conditional and marginal maximum likelihood estimators , 1993 .

[143]  Gerhard H. Fischer,et al.  The Linear Logistic Test Model , 1995 .

[144]  H. Irtel The Uniqueness Structure of Simple Latent Trait Models , 1994 .

[145]  Jeffrey D. Hart,et al.  Nonparametric Smoothing and Lack-Of-Fit Tests , 1997 .

[146]  N. D. Verhelst,et al.  Extensions of the partial credit model , 1989 .

[147]  Gerhard H. Fischer,et al.  The Precision of Gain Scores Under an Item Response Theory Perspective: A Comparison of Asymptotic and Exact Conditional Inference About Change , 2003 .

[148]  G. H. Fischer,et al.  The linear logistic test model as an instrument in educational research , 1973 .

[149]  E. Muraki A Generalized Partial Credit Model: Application of an EM Algorithm , 1992 .

[150]  J. Pfanzagl On Item Parameter Estimation in Certain Latent Trait Models , 1994 .

[151]  H. Kelderman The Polytomous Rasch Model within the Class of Generalized Linear Symmetry Models , 1995 .

[152]  Benjamin D. Wright,et al.  A Procedure for Sample-Free Item Analysis , 1969 .

[153]  H. Irtel An extension of the concept of specific objectivity , 1995 .