Tunneling Transistors Based on Graphene and 2-D Crystals

As conventional transistors become smaller and thinner in the quest for higher performance, a number of hurdles are encountered. The discovery of electronic-grade 2-D crystals has added a new “layer” to the list of conventional semiconductors used for transistors. This paper discusses the properties of 2-D crystals by comparing them with their 3-D counterparts. Their suitability for electronic devices is discussed. In particular, the use of graphene and other 2-D crystals for interband tunneling transistors is discussed for low-power logic applications. Since tunneling phenomenon in reduced dimensions is not conventionally covered in texts, the physics is developed explicitly before applying it to transistors. Though we are in an early stage of learning to design devices with 2-D crystals, they have already been the motivation behind a list of truly novel ideas. This paper reviews a number of such ideas.

[1]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[2]  M. Atiyah,et al.  Polyhedra in Physics, Chemistry and Geometry , 2003, math-ph/0303071.

[3]  J. Appenzeller,et al.  Band-to-band tunneling in carbon nanotube field-effect transistors. , 2004, Physical review letters.

[4]  Wolfram Jaegermann,et al.  Band lineup of layered semiconductor heterointerfaces prepared by van der Waals epitaxy: Charge transfer correction term for the electron affinity rule , 1999 .

[5]  John L. Reno,et al.  Planar quantum transistor based on 2D–2D tunneling in double quantum well heterostructures , 1998 .

[6]  S Das Sarma,et al.  Tuning the effective fine structure constant in graphene: opposing effects of dielectric screening on short- and long-range potential scattering. , 2008, Physical review letters.

[7]  Dapeng Yu,et al.  Tunable bandgap in silicene and germanene. , 2012, Nano letters.

[8]  C. Berger,et al.  Electronic Confinement and Coherence in Patterned Epitaxial Graphene , 2006, Science.

[9]  Qin Zhang,et al.  Low-Voltage Tunnel Transistors for Beyond CMOS Logic , 2010, Proceedings of the IEEE.

[10]  Wenjuan Zhu,et al.  Three-terminal graphene negative differential resistance devices. , 2012, ACS nano.

[11]  Curt Wittig,et al.  The Landau-Zener formula. , 2005, The journal of physical chemistry. B.

[12]  J. Knoch,et al.  Tunneling phenomena in carbon nanotube field‐effect transistors , 2008 .

[13]  J. M. van Ruitenbeek,et al.  Formation and manipulation of a metallic wire of single gold atoms , 1998, Nature.

[14]  W. Mönch,et al.  Valence-band offsets and Schottky barrier heights of layered semiconductors explained by interface-induced gap states , 1998 .

[15]  C. Hu,et al.  Germanium-source tunnel field effect transistors with record high ION/IOFF , 2006, 2009 Symposium on VLSI Technology.

[16]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[17]  W. Haensch,et al.  On the Possibility of Obtaining MOSFET-Like Performance and Sub-60-mV/dec Swing in 1-D Broken-Gap Tunnel Transistors , 2010, IEEE Transactions on Electron Devices.

[18]  Takashi Taniguchi,et al.  Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal , 2004, Nature materials.

[19]  Hasan Sahin,et al.  Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations , 2009, 0907.4350.

[20]  Jing Guo,et al.  Performance Limits of Monolayer Transition Metal Dichalcogenide Transistors , 2011, IEEE Transactions on Electron Devices.

[21]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[22]  Patrick Vogt,et al.  Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. , 2012, Physical review letters.

[23]  Deep Jariwala,et al.  Atomic layers of hybridized boron nitride and graphene domains. , 2010, Nature materials.

[24]  Eli Yablonovitch,et al.  Pronounced Effect of pn-Junction Dimensionality on Tunnel Switch Sharpness , 2011 .

[25]  Chenming Hu Reduce IC power consumption by >10x with a green transistor? , 2009, 2009 Device Research Conference.

[26]  Jun Lou,et al.  Large scale growth and characterization of atomic hexagonal boron nitride layers. , 2010, Nano letters.

[27]  Neil L Allan,et al.  Graphitic nanofilms as precursors to wurtzite films: theory. , 2006, Physical review letters.

[28]  Herbert Kroemer,et al.  Two integral relations pertaining to the electron transport through a bipolar transistor with a nonuniform energy gap in the base region , 1985 .

[29]  Kinam Kim,et al.  Graphene Barristor, a Triode Device with a Gate-Controlled Schottky Barrier , 2012, Science.

[30]  A. Seabaugh,et al.  AlGaSb/InAs Tunnel Field-Effect Transistor With On-Current of 78 $\mu\hbox{A}/\mu\hbox{m}$ at 0.5 V , 2012, IEEE Electron Device Letters.

[31]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[32]  Adrian M. Ionescu,et al.  Tunnel field-effect transistors as energy-efficient electronic switches , 2011, Nature.

[33]  H. Kroemer Nobel Lecture: Quasielectric fields and band offsets: teaching electrons new tricks , 2001 .

[34]  H. Sakaki,et al.  Interface roughness scattering in GaAs/AlAs quantum wells , 1987 .

[35]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[36]  A. Seabaugh,et al.  Graphene Nanoribbon Tunnel Transistors , 2008, IEEE Electron Device Letters.

[37]  Byung-Gook Park,et al.  Tunneling Field-Effect Transistors (TFETs) With Subthreshold Swing (SS) Less Than 60 mV/dec , 2007, IEEE Electron Device Letters.

[38]  D. Jena,et al.  Single-particle tunneling in doped graphene-insulator-graphene junctions , 2011, 1108.4881.

[39]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[40]  P. Solomon,et al.  It’s Time to Reinvent the Transistor! , 2010, Science.

[41]  S. Datta,et al.  Use of negative capacitance to provide voltage amplification for low power nanoscale devices. , 2008, Nano letters.

[42]  Berinder Brar,et al.  fT = 688 GHz and fmax = 800 GHz in Lg = 40 nm In0.7Ga0.3As MHEMTs with gm_max > 2.7 mS/µm , 2011, 2011 International Electron Devices Meeting.

[43]  Tian Fang Carrier transport in graphene, graphene nanoribbon and GaN HEMTs , 2012 .

[44]  G. Samudra,et al.  Graphene Nanoribbon Tunneling Field-Effect Transistors With a Semiconducting and a Semimetallic Heterojunction Channel , 2012, IEEE Transactions on Electron Devices.

[45]  John B. Pendry,et al.  Layer Method for Band Structure of Layer Compounds , 1973 .

[46]  Vladimir I. Fal'ko,et al.  Selective transmission of Dirac electrons and ballistic magnetoresistance of n − p junctions in graphene , 2006 .

[47]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[48]  Wan Sik Hwang,et al.  Transport Properties of Graphene Nanoribbon Transistors on Transport Properties of Graphene Nanoribbon Transistors on Chemical-Vapor-Deposition Grown Wafer-Scale Graphene , 2012 .

[49]  Walter Riess,et al.  Vertical surround-gated silicon nanowire impact ionization field-effect transistors , 2007 .

[50]  K. Gopalakrishnan,et al.  I-MOS: a novel semiconductor device with a subthreshold slope lower than kT/q , 2002, Digest. International Electron Devices Meeting,.

[51]  C. Zener A theory of the electrical breakdown of solid dielectrics , 1934 .

[52]  D. Jena,et al.  Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering. , 2007, Physical review letters.

[53]  T. Tang,et al.  Direct observation of a widely tunable bandgap in bilayer graphene , 2009, Nature.

[54]  W. K. Chan,et al.  Field effect in epitaxial graphene on a silicon carbide substrate , 2007 .

[55]  J. Bardeen Tunnelling from a Many-Particle Point of View , 1961 .

[56]  Kaustav Banerjee,et al.  Electron-hole duality during band-to-band tunneling process in graphene-nanoribbon tunnel-field-effect-transistors , 2010 .

[57]  James S. Speck,et al.  Prospects for LED lighting , 2009 .

[58]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[59]  Z. Alferov,et al.  Nobel Lecture: The double heterostructure concept and its applications in physics, electronics, and technology , 2001 .

[60]  K. Jacobsen,et al.  Phonon-limited mobility inn-type single-layer MoS2from first principles , 2012 .

[61]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[62]  Dennis M. Newns,et al.  A low-voltage high-speed electronic switch based on piezoelectric transduction , 2012 .

[63]  Jinho Oh,et al.  A homochiral metal–organic porous material for enantioselective separation and catalysis , 2000, Nature.

[64]  Theodore I. Kamins,et al.  Device Electronics for Integrated Circuits , 1977 .

[65]  D. Jena,et al.  Carrier statistics and quantum capacitance of graphene sheets and ribbons , 2007, 0707.2242.

[66]  Soo Doo Chae,et al.  Transistors with chemically synthesized layered semiconductor WS2 exhibiting 105 room temperature modulation and ambipolar behavior , 2012, 1204.0474.

[67]  Huili Grace Xing,et al.  Determination of graphene work function and graphene-insulator-semiconductor band alignment by internal photoemission spectroscopy , 2012 .

[68]  C. Hu,et al.  FinFET-a self-aligned double-gate MOSFET scalable to 20 nm , 2000 .

[69]  N. Peres,et al.  Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures , 2011, Science.

[70]  Vinay Ambegaokar,et al.  Tunneling between superconductors , 1963 .

[71]  J. Moon,et al.  Epitaxial-Graphene RF Field-Effect Transistors on Si-Face 6H-SiC Substrates , 2009, IEEE Electron Device Letters.

[72]  P. Lagoudakis,et al.  Room-temperature polariton lasing in semiconductor microcavities. , 2007, Physical review letters.

[73]  W. Heitler The Principles of Quantum Mechanics , 1947, Nature.

[74]  A. M. Ionescu,et al.  Complementary Germanium Electron–Hole Bilayer Tunnel FET for Sub-0.5-V Operation , 2012, IEEE Electron Device Letters.

[75]  Fengnian Xia,et al.  Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. , 2010, Nano letters.

[76]  Jiwon Chang,et al.  Possible applications of topological insulator thin films for tunnel FETs , 2012, 70th Device Research Conference.

[77]  Edward McCann Asymmetry gap in the electronic band structure of bilayer graphene , 2006 .

[78]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[79]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[80]  T. Hiramoto,et al.  Experimental study on superior mobility in [110]-oriented UTB SOI pMOSFETs , 2005, IEEE Electron Device Letters.

[81]  Vladimir M. Shalaev,et al.  Optical Metamaterials: Fundamentals and Applications , 2009 .

[82]  R. Prange TUNNELING FROM A MANY-PARTICLE POINT OF VIEW , 1963 .

[83]  Bin Wang,et al.  Probing charge scattering mechanisms in suspended graphene by varying its dielectric environment , 2012, Nature Communications.

[84]  Mark C. Hersam,et al.  Sorting carbon nanotubes by electronic structure using density differentiation , 2006, Nature nanotechnology.

[85]  Yuan Taur,et al.  Device scaling limits of Si MOSFETs and their application dependencies , 2001, Proc. IEEE.

[86]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[87]  Martín,et al.  Superlubricity of molybdenum disulphide. , 1993, Physical review. B, Condensed matter.

[88]  T. Boykin,et al.  III–V FET channel designs for high current densities and thin inversion layers , 2010, 68th Device Research Conference.

[89]  Richard H. Friend,et al.  Electronic properties of intercalation complexes of the transition metal dichalcogenides , 1987 .

[90]  Jack S Kilby,et al.  TURNING POTENTIAL INTO REALITIES: THE INVENTION OF THE INTEGRATED CIRCUIT , 2002 .

[91]  M. Semtsiv,et al.  Influence of tip-induced band bending on tunnelling spectra of semiconductor surfaces , 2007 .

[92]  Paul M. Solomon,et al.  In Quest of the “Next Switch”: Prospects for Greatly Reduced Power Dissipation in a Successor to the Silicon Field-Effect Transistor , 2010, Proceedings of the IEEE.

[93]  H. Dai,et al.  N-Doping of Graphene Through Electrothermal Reactions with Ammonia , 2009, Science.

[94]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[95]  D. Jena,et al.  Zener tunneling in semiconducting nanotube and graphene nanoribbon p−n junctions , 2008, 0806.0139.

[96]  Adrian M. Ionescu,et al.  The electron–hole bilayer tunnel FET , 2012 .

[97]  F. Andrieu,et al.  Impact of SOI, Si1-xGexOI and GeOI substrates on CMOS compatible Tunnel FET performance , 2008, 2008 IEEE International Electron Devices Meeting.

[98]  Gong Gu,et al.  SymFET: A Proposed Symmetric Graphene Tunneling Field-Effect Transistor , 2012, IEEE Transactions on Electron Devices.

[99]  Y. Yeo,et al.  A Simulation Study of Graphene-Nanoribbon Tunneling FET With Heterojunction Channel , 2010, IEEE Electron Device Letters.

[100]  M. Luisier,et al.  Performance analysis of statistical samples of graphene nanoribbon tunneling transistors with line edge roughness , 2009 .

[101]  E. Tutuc,et al.  Bilayer PseudoSpin Field-Effect Transistor (BiSFET): A Proposed New Logic Device , 2009, IEEE Electron Device Letters.

[102]  Youngki Yoon,et al.  Barrier-free tunneling in a carbon heterojunction transistor , 2010 .