Efficient implementation of the continuous-time hybridization expansion quantum impurity solver

Abstract Strongly correlated quantum impurity problems appear in a wide variety of contexts ranging from nanoscience and surface physics to material science and the theory of strongly correlated lattice models, where they appear as auxiliary systems within dynamical mean-field theory. Accurate and unbiased solutions must usually be obtained numerically, and continuous-time quantum Monte Carlo algorithms, a family of algorithms based on the stochastic sampling of partition function expansions, perform well for such systems. With the present paper we provide an efficient and generic implementation of the hybridization expansion quantum impurity solver, based on the segment representation. We provide a complete implementation featuring most of the recently developed extensions and optimizations. Our implementation allows one to treat retarded interactions and provides generalized measurement routines based on improved estimators for the self-energy and for vertex functions. The solver is embedded in the ALPS-DMFT application package. Program summary Program title: ct-hyb Catalogue identifier: AEOL_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEOL_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Use of the hybridization expansion impurity solvers requires citation of this paper. Use of any ALPS program requires citation of the ALPS [1] paper. No. of lines in distributed program, including test data, etc.: 650044 No. of bytes in distributed program, including test data, etc.: 20553265 Distribution format: tar.gz Programming language: C++/Python. Computer: Desktop PC, high-performance computers. Operating system: Unix, Linux, OSX, Windows. Has the code been vectorized or parallelized?: Yes, MPI parallelized. RAM: 1 GB Classification: 7.3. External routines: ALPS [1, 2, 3], BLAS [4, 5], LAPACK [6], HDF5 [7] Nature of problem: Quantum impurity models were originally introduced to describe a magnetic transition metal ion in a non-magnetic host metal. They are widely used today. In nanoscience they serve as representations of quantum dots and molecular conductors. In condensed matter physics, they are playing an increasingly important role in the description of strongly correlated electron materials, where the complicated many-body problem is mapped onto an auxiliary quantum impurity model in the context of dynamical mean-field theory, and its cluster and diagrammatic extensions. They still constitutes a non-trivial many-body problem, which takes into account the (possibly retarded) interaction between electrons occupying the impurity site. Electrons are allowed to dynamically hop on and off the impurity site, which is described by a time-dependent hybridization function. Solution method: The quantum impurity model is solved using a continuous-time quantum Monte Carlo algorithm which is based on a perturbation expansion of the partition function in the impurity–bath hybridization. Monte Carlo configurations are represented as segments on the imaginary time interval and individual terms correspond to Feynman diagrams which are stochastically sampled to all orders using a Metropolis algorithm. For a detailed review on the method, we refer the reader to [8]. Running time: 1–8 h. References: [1] B. Bauer, L. D. Carr, H. G. Evertz, A. Feiguin, J. Freire, S. Fuchs, L. Gamper, J. Gukelberger, E. Gull, S. Guertler, A. Hehn, R. Igarashi, S. V. Isakov, D. Koop, P. N. Ma, P. Mates, H. Matsuo, O. Parcollet, G. Pawlowski, J. D. Picon, L. Pollet, E. Santos, V. W. Scarola, U. Schollwock, C. Silva, B. Surer, S. Todo, S. Trebst, M. Troyer, M. L. Wall, P. Werner and S. Wessel, Journal of Statistical Mechanics: Theory and Experiment 2011, P05001 (2011). [2] F. Alet, P. Dayal, A. Grzesik, A. Honecker, M. Korner, A. Lauchli, S. R. Manmana, I. P. McCulloch, F. Michel, R. M. Noack, G. Schmid, U. Schollwock, F. Stockli, S. Todo, S. Trebst, M. Troyer, P. Werner, S. Wessel, J. Phys. Soc. Japan 74S (2005) 30. [3] A. Albuquerque, F. Alet, P. Corboz, P. Dayal, A. Feiguin, S. Fuchs, L. Gamper, E. Gull, S. Gurtler, A. Honecker, R. Igarashi, M. Korner, A. Kozhevnikov, A. Lauchli, S. Manmana, M. Matsumoto, I. McCulloch, F. Michel, R. Noack, G. Pawlowski, L. Pollet, T. Pruschke, U. Schollwock, S. Todo, S. Trebst, M. Troyer, P. Werner and S. Wessel, J. Magn. Magn. Mater. 310, 1187 (2007), proceedings of the 17th International Conference on Magnetism The International Conference on Magnetism. [4] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, ACM Transactions on Mathematical Software 5, 324 (1979). [5] L. S. Blackford, J. Demmel, I. Du, G. Henry, M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, and R. C. Whaley, ACM Trans. Math. Softw. 28, 135 (2002). [6] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’ Guide, 3rd ed. (Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999). [7] The HDF Group, Hierarchical data format version 5, http://www.hdfgroup.org/HDF5 (2000–2010). [8] E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer and P. Werner, Rev. Mod. Phys. 83, 349 (2011).

[1]  W. Krauth,et al.  Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions , 1996 .

[2]  J. Lleweilun Smith,et al.  Spatial correlations in dynamical mean-field theory , 2000 .

[3]  Karsten Held,et al.  Conserved quantities of S U ( 2 ) -invariant interactions for correlated fermions and the advantages for quantum Monte Carlo simulations , 2012, 1209.0915.

[4]  Georges,et al.  Numerical solution of the d= , 1992, Physical review letters.

[5]  Tobias J. Hagge,et al.  Physics , 1929, Nature.

[6]  A. I. Lichtenstein,et al.  Dual fermion approach to nonlocal correlations in the Hubbard model , 2006, cond-mat/0612196.

[7]  K. Held,et al.  Dynamical vertex approximation : A step beyond dynamical mean-field theory , 2006, cond-mat/0603100.

[8]  T. Pruschke,et al.  Quantum cluster theories , 2004, cond-mat/0404055.

[9]  UK,et al.  Numerical renormalization group calculations for the self-energy of the impurity Anderson model , 1998, cond-mat/9804224.

[10]  Philipp Werner,et al.  Krylov implementation of the hybridization expansion impurity solver and application to 5-orbital models , 2009, 0908.0681.

[11]  C. Marianetti,et al.  Electronic structure calculations with dynamical mean-field theory , 2005, cond-mat/0511085.

[12]  Matthias Troyer,et al.  Continuous-time solver for quantum impurity models. , 2005, Physical review letters.

[13]  R. Scalettar,et al.  Realistic investigations of correlated electron systems with LDA + DMFT , 2006 .

[14]  T. Holstein,et al.  Studies of polaron motion: Part II. The “small” polaron , 1959 .

[15]  D. Vollhardt,et al.  Correlated Lattice Fermions in High Dimensions , 1989 .

[16]  Adolfo Avella,et al.  Lectures on the Physics of Highly Correlated Electron Systems VII: Seventh Training Course in the Physics of Correlated Electron Systems and High-Tc Superconductors , 2002 .

[17]  Philip W. Anderson,et al.  Localized Magnetic States in Metals , 1961 .

[18]  M. Troyer,et al.  Continuous-time Monte Carlo methods for quantum impurity models , 2010, 1012.4474.

[19]  A. Honecker,et al.  The ALPS Project: Open Source Software for Strongly Correlated Systems , 2004, cond-mat/0410407.

[20]  Kristjan Haule Quantum Monte Carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base , 2007 .

[21]  Emanuel Gull,et al.  Continuous-time auxiliary-field Monte Carlo for quantum impurity models , 2008, 0802.3222.

[22]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[23]  A. I. Lichtenstein,et al.  Continuous-time quantum Monte Carlo method for fermions , 2005 .

[24]  Hartmut Hafermann,et al.  Orthogonal polynomial representation of imaginary-time Green’s functions , 2011, 1104.3215.

[25]  R. Brako,et al.  Slowly varying time-dependent local perturbations in metals: a new approach , 1981 .

[26]  Philipp Werner,et al.  Hybridization expansion impurity solver: General formulation and application to Kondo lattice and two-orbital models , 2006 .

[27]  James Demmel,et al.  LAPACK Users' Guide, Third Edition , 1999, Software, Environments and Tools.

[28]  B. M. Fulk MATH , 1992 .

[29]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[30]  Emanuel Gull,et al.  Submatrix updates for the continuous-time auxiliary-field algorithm , 2010, 1010.3690.

[31]  R. Chitra,et al.  Effective-action approach to strongly correlated fermion systems , 2001 .

[32]  A. Honecker,et al.  The ALPS project release 1.3: Open-source software for strongly correlated systems , 2007 .

[33]  A. I. Lichtenstein,et al.  Dual boson approach to collective excitations in correlated fermionic systems , 2011, 1105.6158.

[34]  K. Held,et al.  Electronic structure calculations using dynamical mean field theory , 2005, cond-mat/0511293.

[35]  S. Todo,et al.  The ALPS project release 2.0: open source software for strongly correlated systems , 2011, 1101.2646.

[36]  A. I. Lichtenstein,et al.  Continuous-time quantum Monte Carlo method for fermions: Beyond auxiliary field framework , 2004 .

[37]  Philipp Werner,et al.  Efficient dynamical mean field simulation of the Holstein-Hubbard model. , 2007, Physical review letters.

[38]  L. Vandersypen,et al.  Spins in few-electron quantum dots , 2006, cond-mat/0610433.

[39]  M I Katsnelson,et al.  Efficient perturbation theory for quantum lattice models. , 2008, Physical review letters.

[40]  Hartmut Hafermann,et al.  Improved Estimators for the Self-Energy and Vertex Function in Hybridization Expansion Continuous-Time Quantum Monte Carlo Simulations , 2012 .

[41]  Philipp Werner,et al.  Dynamical screening in correlated electron materials. , 2010, Physical review letters.