Bayesian inference in surface physics

Bayesian data analysis provides a consistent method for the extraction of information from physics experiments. The approach provides a unified rationale for data analysis, which both justifies many of the commonly used analysis procedures and reveals some of the implicit underlying assumptions. This paper introduces the general ideas of the Bayesian probability theory with emphasis on the application to the evaluation of experimental data, namely the deconvolution of the apparatus function for improving the energy resolution, the reconstruction of depth profiles from Rutherford backscattering measurements, handling of discordant data sets and mixture modelling for background estimation of Auger data.

[1]  V. Dose,et al.  Radical detection in a methane plasma , 2003 .

[2]  Volker Dose,et al.  Enhancement of the energy resolution in ion-beam experimentswith the maximum-entropy method , 1997 .

[3]  H. Grote,et al.  Chemical sputtering yields of carbon based materials at high ion flux densities , 1999 .

[4]  U. von Toussaint,et al.  Maximum entropy decomposition of quadrupole mass spectra , 2004 .

[5]  Volker Dose,et al.  Bayesian PIXE background subtraction , 1999 .

[6]  K. Krieger,et al.  Depth profile determination with confidence intervals from Rutherford backscattering data , 1999 .

[7]  R. T. Cox Probability, frequency and reasonable expectation , 1990 .

[8]  Wolfgang von der Linden,et al.  Maximum Entropy and Bayesian Methods Garching, Germany 1998 , 1999 .

[9]  Volker Dose,et al.  Energy resolution enhancement in ion beam experiments with Bayesian probability theory , 1998 .

[10]  A. Keudell,et al.  Formation of polymer-like hydrocarbon films from radical beams of methyl and atomic hydrogen , 2001 .

[11]  U. von Toussaint,et al.  Bayesian inference and maximum entropy methods in science and engineering , 2004 .

[12]  Volker Dose,et al.  Deconvolution Based on Experimentally Determined Apparatus Functions , 1998 .

[13]  V. Dose Hyperplane Priors , 2003 .

[14]  John Skilling,et al.  Maximum Entropy and Bayesian Methods , 1989 .

[15]  R. Dobrozemsky,et al.  Mass spectrometry of fusion‐plasma gases , 1992 .

[16]  J. N. Kapur,et al.  Entropy Optimization Principles and Their Applications , 1992 .

[17]  J. Roth,et al.  New weight-loss measurements of the chemical erosion yields of carbon materials under hydrogen ion bombardment , 2000 .

[18]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[19]  Bayesian Adaptive Exploration , 2004, astro-ph/0409386.

[20]  V. Dose,et al.  Handling discordant data sets , 2001 .

[21]  D. A. Alman,et al.  Erosion/redeposition analysis : status of modeling and code validation for semi-detached tokamak edge plasmas. , 1999 .

[22]  T. Loredo,et al.  A new method for the detection of a periodic signal of unknown shape and period , 1992 .

[23]  P. C. Gregory,et al.  Bayesian Periodic Signal Detection. I. Analysis of 20 Years of Radio Flux Measurements of the X-Ray Binary LS I +61°303 , 1999 .

[24]  J. Brooks,et al.  Erosion / redeposition analysis : status of modeling and code validation for semi-detached edge plasmas I , 2000 .

[25]  Robert W. Stark,et al.  Bayesian reconstruction of surface roughness and depth profiles , 2005 .

[26]  Volker Dose,et al.  Outlier Tolerant Parameter Estimation , 1999 .

[27]  Volker Dose,et al.  Evaluation of chemical erosion data for carbon materials at high ion fluxes using Bayesian probability theory , 2001 .

[28]  W von der Linden,et al.  Analysis of multicomponent mass spectra applying Bayesian probability theory. , 2001, Journal of mass spectrometry : JMS.

[29]  John S. J. Hsu,et al.  Bayesian Methods: An Analysis for Statisticians and Interdisciplinary Researchers , 1999 .

[30]  R. Bryan,et al.  MAXIMUM ENTROPY DATA ANALYSIS , 1986 .

[31]  V. Dose,et al.  Background estimation in experimental spectra , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[32]  Udo V Toussaint,et al.  Bayesian neural-networks-based evaluation of binary speckle data. , 2004, Applied optics.

[33]  Editors , 1986, Brain Research Bulletin.

[34]  Joachim Roth,et al.  Chemical erosion of carbon based materials in fusion devices , 1999 .

[35]  J. N. Kapur,et al.  Entropy optimization principles with applications , 1992 .

[36]  L. Dublin Vital Statistics. , 1961, British medical journal.

[37]  C. García-Rosales,et al.  CORRIGENDUM: Analytic description of the chemical erosion of graphite by hydrogen ions , 1996 .

[38]  D. S. Sivia,et al.  A Bayesian approach to extracting structure‐factor amplitudes from powder diffraction data , 1994 .

[39]  M. Mayer SIMNRA, a simulation program for the analysis of NRA, RBS and ERDA , 1999 .

[40]  W von der Linden,et al.  Signal and background separation. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[41]  Francois Ochsenbein,et al.  Astronomical Data Analysis Software and Systems (ADASS) XIII , 2004 .

[42]  V. Dose Bayesian inference in physics: case studies , 2003 .

[43]  Volker Dose,et al.  Source detection with Bayesian inference on ROSAT all-sky survey data sample , 2004 .

[44]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[45]  A. Dinklage,et al.  Institute of Physics Publishing Plasma Physics and Controlled Fusion Bayesian Modelling of Fusion Diagnostics , 2022 .

[46]  L. M. M.-T. Theory of Probability , 1929, Nature.