Adaptive finite element method for shape optimization

We examine shape optimization problems in the context of inexact sequential quadratic programming. Inexactness is a consequence of using adaptive finite element methods (AFEM) to approx- imate the state and adjoint equations (via the dual weighted residual method), update the boundary, and compute the geometric functional. We present a novel algorithm that equidistributes the errors due to shape optimization and discretization, thereby leading to coarse resolution in the early stages and fine resolution upon convergence, and thus optimizing the computational effort. We discuss the ability of the algorithm to detect whether or not geometric singularities such as corners are genuine to the problem or simply due to lack of resolution - a new paradigm in adaptivity.

[1]  E. Ramm,et al.  Adaptive FE-procedures in shape optimization , 2000 .

[2]  Olivier Pironneau,et al.  Applied Shape Optimization for Fluids, Second Edition , 2009, Numerical mathematics and scientific computation.

[3]  O. Pironneau On optimum design in fluid mechanics , 1974 .

[4]  J. Roche Adaptive Method for Shape Optimization , 2005 .

[5]  A. Quarteroni,et al.  OPTIMAL CONTROL AND SHAPE OPTIMIZATION OF AORTO-CORONARIC BYPASS ANASTOMOSES , 2003 .

[6]  Ricardo H. Nochetto,et al.  Discrete gradient flows for shape optimization and applications , 2007 .

[7]  Frédéric de Gournay,et al.  Velocity Extension for the Level-set Method and Multiple Eigenvalues in Shape Optimization , 2006, SIAM J. Control. Optim..

[8]  A. Loh,et al.  Improved technique for polytetrafluoroethylene bypass grafting: Long‐term results using anastomotic vein patches , 1992, The British journal of surgery.

[9]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[10]  Michel C. Delfour Shapes and Geometries , 1987 .

[11]  M. Burger A framework for the construction of level set methods for shape optimization and reconstruction , 2003 .

[12]  Piergiorgio Alotto,et al.  Mesh adaption and optimization techniques in magnet design , 1996 .

[13]  N. V. Banichuk,et al.  Mesh refinement for shape optimization , 1995 .

[14]  M. C. Delfour,et al.  Shapes and Geometries - Metrics, Analysis, Differential Calculus, and Optimization, Second Edition , 2011, Advances in design and control.

[15]  Endre Süli,et al.  Adaptive error control for finite element approximations of the lift and drag coefficients in viscous flow , 1997 .

[16]  Jan Sokolowski,et al.  Introduction to shape optimization , 1992 .

[17]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[18]  Ricardo H. Nochetto,et al.  Geometrically Consistent Mesh Modification , 2010, SIAM J. Numer. Anal..

[19]  Enrique Fernández-Cara,et al.  The Differentiability of the Drag with Respect to the Variations of a Lipschitz Domain in a Navier--Stokes Flow , 1997 .

[20]  Kunibert G. Siebert,et al.  Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.

[21]  C. Kleinstreuer,et al.  Computational design of a bypass graft that minimizes wall shear stress gradients in the region of the distal anastomosis. , 1997, Journal of vascular surgery.

[22]  Ricardo H. Nochetto,et al.  Surface Diffusion of Graphs: Variational Formulation, Error Analysis, and Simulation , 2004, SIAM J. Numer. Anal..

[23]  Amy Henderson Squilacote The Paraview Guide , 2008 .

[24]  Endre Süli,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[25]  J. Cea Conception optimale ou identification de formes, calcul rapide de la dérivée directionnelle de la fonction coût , 1986 .

[26]  Alan Demlow,et al.  Higher-Order Finite Element Methods and Pointwise Error Estimates for Elliptic Problems on Surfaces , 2009, SIAM J. Numer. Anal..

[27]  Miguel Sebastian Pauletti,et al.  Parametric AFEM for geometric evolution equation and coupled fluid -membrane interaction , 2008 .

[28]  Ricardo H. Nochetto,et al.  AFEM for the Laplace-Beltrami operator on graphs: Design and conditional contraction property , 2011, Math. Comput..

[29]  Gianluigi Rozza Shape design by optimal flow control and reduced basis techniques , 2005 .

[30]  O. Pironneau On optimum profiles in Stokes flow , 1973, Journal of Fluid Mechanics.

[31]  M. Giles,et al.  Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.

[32]  A. Schmidt,et al.  Design of Adaptive Finite Element Software , 2005 .

[33]  Alan Demlow,et al.  An Adaptive Finite Element Method for the Laplace-Beltrami Operator on Implicitly Defined Surfaces , 2007, SIAM J. Numer. Anal..

[34]  Grégoire Allaire Conception optimale de structures , 2007 .