Generalised canonical systems related to matrix string equations: corresponding structured operators and high-energy asymptotics of the Weyl functions

We obtain high energy asymptotics of Titchmarsh-Weyl functions of the generalised canonical systems generalising in this way a seminal Gesztesy-Simon result. The matrix valued analog of the amplitude function satisfies in this case an interesting new identity. The corresponding structured operators are studied as well. MSC(2020): 34B20, 37J05, 47A48, 47A62

[1]  L. Sakhnovich,et al.  Inverse Problems and Nonlinear Evolution Equations: Solutions, Darboux Matrices and Weyl-Titchmarsh Functions , 2013 .

[2]  H. Dym,et al.  Bitangential Direct and Inverse Problems for Systems of Integral and Differential Equations , 2012 .

[3]  C. Remling Spectral Theory of Canonical Systems , 2018 .

[4]  G. Teschl,et al.  Spectral asymptotics for canonical systems , 2014, 1412.0277.

[5]  Pseudospectral Functions for Canonical Differential Systems. II , 2012 .

[6]  A. Sakhnovich Dynamical canonical systems and their explicit solutions , 2016, 1603.08709.

[7]  Steve Clark,et al.  Weyl-Titchmarsh M-Function Asymptotics, Local Uniqueness Results, Trace Formulas, and Borg-type Theorems for Dirac Operators , 2001 .

[8]  Anthony Leonard,et al.  INTEGRAL EQUATIONS WITH DIFFERENCE KERNELS ON FINITE INTERVALS. , 1965 .

[9]  C. Remling Inverse spectral theory for one-dimensional Schrödinger operators: The A function , 2003 .

[10]  Israel Gohberg,et al.  Theory and Applications of Volterra Operators in Hilbert Space , 2004 .

[11]  Harald Woracek,et al.  Canonical systems with discrete spectrum , 2019, 1904.03662.

[12]  Inversion of structured operators , 1994 .

[13]  L. Golinskii,et al.  Hilbert spaces of entire functions as a J theory subject , 1997 .

[14]  Alexei Rybkin,et al.  On the Trace Approach to the Inverse Scattering Problem in Dimension One , 2001, SIAM J. Math. Anal..

[15]  C. Remling,et al.  Oscillation theory and semibounded canonical systems , 2018, Journal of Spectral Theory.

[16]  F. Gesztesy,et al.  The inverse approach to Dirac-type systems based on the A-function concept , 2019, Journal of Functional Analysis.

[17]  Alexander Sakhnovich On the solution of the inverse problem for a class of canonical systems corresponding to matrix string equations , 2021 .

[18]  A. Sakhnovich Inverse problem for Dirac systems with locally square-summable potentials and rectangular Weyl functions , 2014, 1401.3605.

[19]  H. Woracek,et al.  A local inverse spectral theorem for Hamiltonian systems , 2011 .

[20]  Alexander Sakhnovich,et al.  Dirac type and canonical systems: spectral and Weyl–Titchmarsh matrix functions, direct and inverse problems , 2002 .

[21]  Masatoshi Suzuki An inverse problem for a class of canonical systems having Hamiltonians of determinant one , 2020 .

[22]  Barry Simon,et al.  A new approach to inverse spectral theory , 2016 .

[24]  F. Gesztesy,et al.  On Local Borg–Marchenko Uniqueness Results , 2000 .

[25]  F. Atkinson On the location of the Weyl circles , 1981, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[26]  Lev A. Sakhnovich,et al.  Spectral Theory of Canonical Differential Systems. Method of Operator Identities , 1999 .

[27]  Order problem for canonical systems and a conjecture of Valent , 2015, 1502.04402.

[28]  F. Gesztesy Inverse spectral theory as influenced by Barry Simon , 2010, 1002.0388.

[29]  Lev A. Sakhnovich,et al.  Factorization problems and operator identities , 1986 .

[30]  L. Sakhnovich EQUATIONS WITH A DIFFERENCE KERNEL ON A FINITE INTERVAL , 1980 .

[31]  H. Langer,et al.  Continuation of Hermitian Positive Definite Functions and Related Questions , 2014 .

[32]  G. Szegő Polynomials orthogonal on the unit circle , 1939 .

[33]  W. N. Everitt On a Property of the M -Coefficient of a Secondorder Linear Differential Equation , 1972 .

[34]  Louis de Branges,et al.  Hilbert spaces of entire functions , 1968 .

[35]  Barry Simon,et al.  A new approach to inverse spectral theory, II. General real potentials and the connection to the spectral measure , 1998, math/9809182.

[36]  Barry Simon,et al.  A new approach to inverse spectral theory, I. Fundamental formalism , 1999, math/9906118.

[37]  H. Langer Transfer Functions and Local Spectral Uniqueness for Sturm-Liouville Operators, Canonical Systems and Strings , 2016, 1604.00416.