Subalgebras of the Split Octonions

[1]  J. Weiss A Kind Of Magic , 2015 .

[2]  Tevian Dray,et al.  The Geometry of the Octonions , 2015 .

[3]  S. Maubach,et al.  On maximal subalgebras , 2015, 1501.03753.

[4]  T. Dray,et al.  E6, the Group: The structure of SL(3,O) , 2012, 1212.3182.

[5]  M. Giuliani,et al.  CLASSIFICATION OF SUBALGEBRAS OF THE CAYLEY ALGEBRA OVER A FINITE FIELD , 2010 .

[6]  C. Manogue,et al.  Octonions, E6, and particle physics , 2009, 0911.2253.

[7]  C. Manogue,et al.  Octonionic Cayley Spinors and E6 , 2009, 0911.2255.

[8]  C. H. Barton,et al.  Magic squares and matrix models of Lie algebras , 2002, math/0203010.

[9]  C. Manogue,et al.  Quaternionic Spin , 1999, hep-th/9910010.

[10]  C. Manogue,et al.  Dimensional Reduction , 1998, hep-th/9807044.

[11]  Chia-Hsiung Tze,et al.  On the Role of Division, Jordan and Related Algebras in Particle Physics , 1996 .

[12]  Susumo Okubo,et al.  Introduction to octonion and other non-associative algebras in physics , 1995 .

[13]  C. Manogue,et al.  Finite Lorentz transformations, automorphisms, and division algebras , 1993, hep-th/9302044.

[14]  C. Manogue,et al.  General solutions of covariant superstring equations of motion. , 1989, Physical review. D, Particles and fields.

[15]  Kwok-wai Chung,et al.  Octonions and the Lorentz and conformal groups of ten-dimensional space-time , 1987 .

[16]  Fairlie,et al.  A parametrization of the covariant superstring. , 1987, Physical review. D, Particles and fields.

[17]  Fairlie,et al.  Lorentz invariance and the composite string. , 1986, Physical review. D, Particles and fields.

[18]  P. Ramond,et al.  A Universal Gauge Theory Model Based on E6 , 1976 .

[19]  M. Günaydin,et al.  Quark statistics and octonions , 1974 .

[20]  A. Hurwitz,et al.  Über die Komposition der quadratischen Formen , 1922 .

[21]  L. E. Dickson,et al.  On Quaternions and Their Generalization and the History of the Eight-Square Theorem. Addenda , 1919 .

[22]  H. Freudenthal Lie groups in the foundations of geometry , 1964 .