Current-assisted thermally activated flux liberation in ultrathin nanopatterned NbN superconducting meander structures

We present results from an extensive study of fluctuation phenomena in superconducting nanowires made from sputtered NbN. Nanoscale wires were fabricated in form of a meander and operated at a constant temperature T0.4Tc0. The superconducting state is driven close to the electronic phase transition by a high bias current near the critical one. Fluctuations of sufficient strength temporarily drive a section of the meander structure into the normal-conducting state, which can be registered as a voltage pulse of nanosecond duration. We considered three different models vortex-antivortex pairs, vortex edge barriers, and phase-slip centers to explain the experimental data. Only thermally excited vortices, either via unbinding of vortex-antivortex pairs or vortices overcoming the edge barrier, lead to a satisfactory and consistent description for all measurements.

[1]  M. Siegel,et al.  Optical and transport properties of ultrathin NbN films and nanostructures , 2009 .

[2]  M. Siegel,et al.  Intrinsic quantum efficiency and electro-thermal model of a superconducting nanowire single-photon detector , 2009 .

[3]  T. Qian,et al.  Numerical study of the phase slip in two-dimensional superconducting strips , 2008 .

[4]  A. D. Zaikin,et al.  Superconductivity in one dimension , 2008, 0805.2118.

[5]  M. Siegel,et al.  Current-Induced Critical State in NbN Thin-Film Structures , 2008 .

[6]  A. Bezryadin Quantum suppression of superconductivity in nanowires , 2008 .

[7]  M. Franz Superconductivity: Importance of fluctuations , 2007 .

[8]  V. Mitin,et al.  One-dimensional resistive states in quasi-two-dimensional superconductors : Experiment and theory , 2007, 0709.0709.

[9]  I. Milostnaya,et al.  Dark Counts in Nanostructured NbN Superconducting Single-Photon Detectors and Bridges , 2007, IEEE Transactions on Applied Superconductivity.

[10]  J. Palacios,et al.  Critical fields for vortex expulsion from narrow superconducting strips , 2007, cond-mat/0703735.

[11]  V. Kogan Erratum: Pearl’s vortex near the film edge [Phys. Rev. B49, 15874 (1994)] , 2007 .

[12]  Eric A. Dauler,et al.  Kinetic-inductance-limited reset time of superconducting nanowire photon counters , 2005, physics/0510238.

[13]  J. Kirtley,et al.  Dissipation in ultra-thin current-carrying superconducting bridges; evidence for quantum tunneling of Pearl vortices , 2005, cond-mat/0504140.

[14]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[15]  H Germany,et al.  Fluctuation effects in superconducting nanostrips , 2004, cond-mat/0411033.

[16]  B. Delaet,et al.  Fabrication of a superconducting niobium nitride hot electron bolometer for single-photon counting , 2004 .

[17]  F. Manzano,et al.  Magnetic penetration depth of MgB2 , 2003 .

[18]  C. N. Lau,et al.  Quantum phase slips in superconducting nanowires. , 2001, Physical review letters.

[19]  O. Okunev,et al.  Picosecond superconducting single-photon optical detector , 2001 .

[20]  G. Maksimova Mixed state and critical current in narrow semiconducting films , 1998 .

[21]  Semenov,et al.  Analysis of the nonequilibrium photoresponse of superconducting films to pulsed radiation by use of a two-temperature model. , 1995, Physical review. B, Condensed matter.

[22]  A. Kadin,et al.  Nonbolometric NbN photodetector , 1995, IEEE Transactions on Applied Superconductivity.

[23]  Kogan Pearl's vortex near the film edge. , 1994, Physical review. B, Condensed matter.

[24]  Gregory N. Goltsman,et al.  Broadband ultrafast superconducting NbN detector for electromagnetic radiation , 1994 .

[25]  Giordano,et al.  Evidence for macroscopic quantum tunneling in one-dimensional superconductors. , 1988, Physical review letters.

[26]  A. Hebard,et al.  Superconducting phase transitions in indium/indium-oxide thin-film composites , 1983 .

[27]  A. Leggett,et al.  Quantum tunnelling in a dissipative system , 1983 .

[28]  A. Kadin,et al.  Renormalization and the Kosterlitz-Thouless transition in a two-dimensional superconductor , 1983 .

[29]  Stuart A. Wolf,et al.  Use of granular NbN as a superconducting bolometer , 1981 .

[30]  Anthony J Leggett,et al.  Influence of Dissipation on Quantum Tunneling in Macroscopic Systems , 1981 .

[31]  David R. Nelson,et al.  Resistive transition in superconducting films , 1979 .

[32]  J. E. Mooij,et al.  Possibility of Vortex-Antivortex Pair Dissociation in Two-Dimensional Superconductors , 1979 .

[33]  D. Nelson,et al.  Universal Jump in the Superfluid Density of Two-Dimensional Superfluids , 1977 .

[34]  M. Tinkham,et al.  Fluctuations near superconducting phase transitions , 1975 .

[35]  B. Josephson,et al.  The discovery of tunnelling supercurrents , 1974 .

[36]  J. Kosterlitz,et al.  The critical properties of the two-dimensional xy model , 1974 .

[37]  D. Thouless,et al.  Ordering, metastability and phase transitions in two-dimensional systems , 1973 .

[38]  M. Beasley,et al.  FLUCTUATION EFFECTS ON THE SUPERCONDUCTING TRANSITION OF TIN WHISKER CRYSTALS. , 1972 .

[39]  W. Webb,et al.  Onset of quantized thermal fluctuations in one-dimensional superconductors , 1970 .

[40]  B. Halperin,et al.  Time scale of intrinsic resistive fluctuations in thin superconducting wires , 1970 .

[41]  D. Mccumber Intrinsic resistive transition in thin superconducting wires driven from current sources , 1968 .

[42]  K. Maki Critical Fluctuation of the Order Parameter in a Superconductor. I , 1968 .

[43]  K. Maki The Critical Fluctuation of the Order Parameter in Type-II Superconductors , 1968 .

[44]  A. Larkin,et al.  The influence of fluctuation pairing of electrons on the conductivity of normal metal , 1968 .

[45]  J. Langer,et al.  Intrinsic Resistive Transition in Narrow Superconducting Channels , 1967 .

[46]  W. Little Decay of Persistent Currents in Small Superconductors , 1967 .

[47]  E. Helfand,et al.  Temperature and Purity Dependence of the Superconducting Critical Field, H c 2 . III. Electron Spin and Spin-Orbit Effects , 1966 .

[48]  John Bardeen,et al.  Theory of the Motion of Vortices in Superconductors , 1965 .

[49]  Brian D. Josephson,et al.  Supercurrents through barriers , 1965 .

[50]  E. Helfand,et al.  Temperature and purity dependence of the superconducting critical field, H/sub c2/ , 1964 .

[51]  J. Pearl,et al.  CURRENT DISTRIBUTION IN SUPERCONDUCTING FILMS CARRYING QUANTIZED FLUXOIDS , 1964 .

[52]  J. Livingston,et al.  Surface Barrier in Type-II Superconductors , 1964 .

[53]  B. Josephson Possible new effects in superconductive tunnelling , 1962 .

[54]  B. Mühlschlegel Die thermodynamischen Funktionen des Supraleiters , 1959 .

[55]  L. Cooper,et al.  Theory of superconductivity , 1957 .

[56]  L. Landau,et al.  On the theory of superconductivity , 1955 .

[57]  H. Alloul Introduction to Superconductivity , 2011 .

[58]  John B Ketterson,et al.  The Physics of Superconductors , 2003 .

[59]  Alexey V. Ustinov,et al.  The Physics of Superconductors , 1997 .

[60]  Konstantin K. Likharev,et al.  Superconducting weak links , 1979 .

[61]  H. Casimir,et al.  On supraconductivity I , 1934 .

[62]  M. Smoluchowski Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen , 1906 .