Source parameters of the Sarez-Pamir earthquake of 1911 February 18

[1]  O. Klotz Earthquake of February 18, 1911 , 1915, Bulletin of the Seismological Society of America.

[2]  V. Karnik,et al.  Standardization of the earthquake magnitude scale , 1962 .

[3]  R. Gloaguen,et al.  The giant Shakhdara migmatitic gneiss dome, Pamir, India‐Asia collision zone: 1. Geometry and kinematics , 2013 .

[4]  H. Jeffreys The Pamir Earthquake of 1911 February 18, in Relation to the Depths of Earthquake Foci. , 1923 .

[5]  Gabi Laske,et al.  CRUST 5.1: A global crustal model at 5° × 5° , 1998 .

[6]  Luis Rivera,et al.  Horizontal pendulum development and the legacy of Ernst von Rebeur-Paschwitz , 2012, Journal of Seismology.

[7]  Roger Bilham,et al.  The Sarez-Pamir Earthquake and Landslide of 18 February 1911 , 2012 .

[8]  Lothar Ratschbacher,et al.  Quaternary deformation in the Eastern Pamirs, Tadzhikistan and Kyrgyzstan , 1995 .

[9]  James W. Dewey,et al.  The early history of seismometry (to 1900) , 1969 .

[10]  K. Allstadt Extracting source characteristics and dynamics of the August 2010 Mount Meager landslide from broadband seismograms , 2013 .

[11]  Paul D. Cole,et al.  Model Space Exploration for Determining Landslide Source History from Long-Period Seismic Data , 2015, Pure and Applied Geophysics.

[12]  C. Haberland,et al.  Deep burial of Asian continental crust beneath the Pamir imaged with local earthquake tomography , 2013 .

[13]  J. Khan,et al.  The giant Shakhdara migmatitic gneiss dome, Pamir, India‐Asia collision zone: 2. Timing of dome formation , 2013 .

[14]  B. Kennett,et al.  Traveltimes for global earthquake location and phase identification , 1991 .

[15]  J. Schweitzer,et al.  88 - Old Seismic Bulletins to 1920: A Collective Heritage from Early Seismologists , 2003 .

[16]  Peter Molnar,et al.  Geological and Geophysical Evidence for Deep Subduction of Continental Crust Beneath the Pamir , 1993 .

[17]  Frank Scherbaum,et al.  Scaling Relations of Earthquake Source Parameter Estimates with Special Focus on Subduction Environment , 2010 .

[18]  H. Kanamori,et al.  Landslide basal friction as measured by seismic waves , 2003 .

[19]  P. Molnar,et al.  Kinematics of the Pamir and Hindu Kush regions from GPS geodesy , 2013 .

[20]  Remko Scharroo,et al.  Generic Mapping Tools: Improved Version Released , 2013 .

[21]  A. C. Robinson,et al.  Tectonic evolution of the northeastern Pamir: Constraints from the northern portion of the Cenozoic Kongur Shan extensional system, western China , 2004 .

[22]  L. Ratschbacher,et al.  Assembly of the Pamirs: Age and origin of magmatic belts from the southern Tien Shan to the southern Pamirs and their relation to Tibet , 2004 .

[23]  Jie Li,et al.  GPS velocity field for the Tien Shan and surrounding regions , 2010 .

[24]  Johannes Schweitzer,et al.  HYPOSAT – An Enhanced Routine to Locate Seismic Events , 2001 .

[25]  A. Michelini,et al.  Collecting, digitizing, and distributing historical seismological data , 2005 .

[26]  Jie Chen,et al.  Late Miocene-Pliocene deceleration of dextral slip between Pamir and Tarim: Implications for Pamir orogenesis , 2011 .

[27]  F. Krüger,et al.  Source process of the 1911 M8.0 Chon-Kemin earthquake: investigation results by analogue seismic records , 2015 .

[28]  D. Grabovec,et al.  On the digitizing of historical seismograms , 1994 .

[29]  Peter Bormann,et al.  Public Release of the ISC-GEM Global Instrumental Earthquake Catalogue (1900-2009) , 2013 .

[30]  B. Gutenberg,et al.  Seismicity of the Earth and associated phenomena , 1950, MAUSAM.

[31]  D. Bindi,et al.  Locations and magnitudes of earthquakes in Central Asia from seismic intensity data , 2013, Journal of Seismology.

[32]  Göran Ekström,et al.  The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes , 2012 .

[33]  Eleonore Stutzmann,et al.  Numerical modeling of the Mount Steller landslide flow history and of the generated long period seismic waves , 2012 .

[34]  John Milne,et al.  Earthquakes and other Earth Movements , 1913, Nature.

[35]  K. Fuchs,et al.  Computation of Synthetic Seismograms with the Reflectivity Method and Comparison with Observations , 1971 .

[36]  C. Haberland,et al.  Geometry of the Pamir‐Hindu Kush intermediate‐depth earthquake zone from local seismic data , 2013 .

[37]  C. Haberland,et al.  Seismic imaging of subducting continental lower crust beneath the Pamir , 2013 .

[38]  M. Strecker,et al.  Accommodation of transpressional strain in the Arabia‐Eurasia collision zone: new constraints from (U‐Th)/He thermochronology in the Alborz mountains, north Iran , 2013 .

[39]  L. Ratschbacher,et al.  Deep India meets deep Asia: Lithospheric indentation, delamination and break-off under Pamir and Hindu Kush (Central Asia) , 2016 .

[40]  Hiroyuki Kumagai,et al.  Dynamic landslide processes revealed by broadband seismic records , 2013 .

[41]  D. Stich,et al.  Quantitative Analysis of Early Seismograph Recordings , 2008 .

[42]  L. Ratschbacher,et al.  The 2008 Nura earthquake sequence at the Pamir‐Tian Shan collision zone, southern Kyrgyzstan , 2014 .

[43]  J. Boatwright,et al.  Seismic Sources and Source Parameters , 2009 .

[44]  Henriette Sudhaus,et al.  Strain partitioning at the eastern Pamir-Alai revealed through SAR data analysis of the 2008 Nura earthquake , 2014 .