Prediction of the ullage gas thermal stratification in a NASP vehicle propellant tank experimental simulation using FLOW-3D

[1]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[2]  J. Navickas,et al.  Modeling of solid-liquid circulation in the National Aerospace Plane's slush hydrogen tanks , 1988 .

[3]  Ned P. Hannum Technology issues associated with fueling the national aerospace plane with slush hydrogen , 1988 .

[4]  G. P. Richter,et al.  Slush Hydrogen (SLH2) Technology Development for Application to the National Aerospace Plane (NASP) , 1990 .

[5]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[6]  C. W. Hirt,et al.  Zero-gravity slosh analysis , 1985 .

[7]  A. A. Amsden,et al.  A numerical fluid dynamics calculation method for all flow speeds , 1971 .

[8]  J. Navickas,et al.  Prediction of a liquid tank thermal stratification by a finite difference computing method , 1988 .

[9]  J. E. Maloy,et al.  Gaseous hydrogen requirements for the discharge of liquid hydrogen from a 1.52 meter /5 ft/ diameter spherical tank , 1970 .

[10]  Richard L. DeWitt,et al.  Gaseous-Hydrogen Pressurant Requirements for the Discharge of Liquid Hydrogen from a 3.96 Meter /13 ft/ Diameter Spherical Tank , 1969 .

[11]  C. W. Hirt,et al.  Numerical simulation of propellant sloshing for spacecraft , 1984 .

[12]  P. A. Masters Computer programs for pressurization (RAMP) and pressurized expulsion from a cryogenic liquid propellant tank , 1974 .

[13]  R. Hussey,et al.  Spin‐up from rest in a cylinder , 1977 .