Acute Dynamin Inhibition Dissects Synaptic Vesicle Recycling Pathways That Drive Spontaneous and Evoked Neurotransmission

Synapses maintain synchronous, asynchronous, and spontaneous forms of neurotransmission that are distinguished by their Ca2+ dependence and time course. Despite recent advances in our understanding of the mechanisms that underlie these three forms of release, it remains unclear whether they originate from the same vesicle population or arise from distinct vesicle pools with diverse propensities for release. Here, we used a reversible inhibitor of dynamin, dynasore, to dissect the vesicle pool dynamics underlying the three forms of neurotransmitter release in hippocampal GABAergic inhibitory synapses. In dynasore, evoked synchronous release and asynchronous neurotransmission detected after activity showed marked and unrecoverable depression within seconds. In contrast, spontaneous release remained intact after intense stimulation in dynasore or during prolonged (∼1 h) application of dynasore at rest, suggesting that separate recycling pathways maintain evoked and spontaneous synaptic vesicle trafficking. In addition, simultaneous imaging of spectrally separable styryl dyes revealed that, in a given synapse, vesicles that recycle spontaneously and in response to activity do not mix. These findings suggest that evoked synchronous and asynchronous release originate from the same vesicle pool that recycles rapidly in a dynamin-dependent manner, whereas a distinct vesicle pool sustains spontaneous release independent of dynamin activation. This result lends additional support to the notion that synapses harbor distinct vesicle populations with divergent release properties that maintain independent forms of neurotransmission.

[1]  C. Guatimosim,et al.  Synaptic Vesicle Pools at the Frog Neuromuscular Junction , 2003, Neuron.

[2]  Pietro De Camilli,et al.  Synaptic vesicle endocytosis. , 2012, Cold Spring Harbor perspectives in biology.

[3]  Harvey T. McMahon,et al.  The dynamin superfamily: universal membrane tubulation and fission molecules? , 2004, Nature Reviews Molecular Cell Biology.

[4]  Chen Zhang,et al.  Calcium- and Dynamin-Independent Endocytosis in Dorsal Root Ganglion Neurons , 2004, Neuron.

[5]  B. Katz,et al.  Spontaneous subthreshold activity at motor nerve endings , 1952, The Journal of physiology.

[6]  D. Atasoy,et al.  Synaptic Vesicle Recycling Adapts to Chronic Changes in Activity , 2006, The Journal of Neuroscience.

[7]  Jianhua Xu,et al.  GTP-independent rapid and slow endocytosis at a central synapse , 2008, Nature Neuroscience.

[8]  T. Kirchhausen,et al.  Dynasore, a cell-permeable inhibitor of dynamin. , 2006, Developmental cell.

[9]  R. Schneggenburger,et al.  Allosteric modulation of the presynaptic Ca2+ sensor for vesicle fusion , 2005, Nature.

[10]  Xinran Liu,et al.  An Isolated Pool of Vesicles Recycles at Rest and Drives Spontaneous Neurotransmission , 2005, Neuron.

[11]  R. Tsien,et al.  Properties of fast endocytosis at hippocampal synapses. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[12]  K Kobylarz,et al.  Acute cholesterol depletion inhibits clathrin-coated pit budding. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[13]  T. Kirchhausen,et al.  Use of dynasore, the small molecule inhibitor of dynamin, in the regulation of endocytosis. , 2008, Methods in enzymology.

[14]  M. Charlton,et al.  Cholesterol and synaptic transmitter release at crayfish neuromuscular junctions , 2006, The Journal of physiology.

[15]  K. Altendorf,et al.  Bafilomycins and concanamycins as inhibitors of V-ATPases and P-ATPases. , 1997, The Journal of experimental biology.

[16]  R. Tsien,et al.  Activity-dependent regulation of synaptic clustering in a hippocampal culture system. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[17]  L. Trussell,et al.  Inhibitory Transmission Mediated by Asynchronous Transmitter Release , 2000, Neuron.

[18]  T. Südhof,et al.  Autonomous Function of Synaptotagmin 1 in Triggering Synchronous Release Independent of Asynchronous Release , 2005, Neuron.

[19]  J. Hablitz,et al.  GABA Vesicles at Synapses: Are There 2 Distinct Pools? , 2009, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[20]  T. Südhof,et al.  Synaptotagmin 7 splice variants differentially regulate synaptic vesicle recycling , 2003, The EMBO journal.

[21]  T. Südhof,et al.  A dual-Ca2+-sensor model for neurotransmitter release in a central synapse , 2007, Nature.

[22]  K. Moulder,et al.  Spontaneous and Evoked Glutamate Release Activates Two Populations of NMDA Receptors with Limited Overlap , 2008, The Journal of Neuroscience.

[23]  R. Delgado,et al.  Size of Vesicle Pools, Rates of Mobilization, and Recycling at Neuromuscular Synapses of a Drosophila mutant, shibire , 2000, Neuron.

[24]  H. Yamada,et al.  Regulatory mechanisms of dynamin-dependent endocytosis. , 2005, Journal of biochemistry.

[25]  Jurgen Klingauf,et al.  Synaptic vesicles recycling spontaneously and during activity belong to the same vesicle pool , 2007, Nature Neuroscience.

[26]  V. Murthy,et al.  Inhibition of dynamin completely blocks compensatory synaptic vesicle endocytosis , 2006, Proceedings of the National Academy of Sciences.

[27]  V. Shahrezaei,et al.  Competition between Phasic and Asynchronous Release for Recovered Synaptic Vesicles at Developing Hippocampal Autaptic Synapses , 2022 .

[28]  Alexander M Aravanis,et al.  Limited numbers of recycling vesicles in small CNS nerve terminals: implications for neural signaling and vesicular cycling , 2001, Trends in Neurosciences.

[29]  Yildirim Sara,et al.  Development of Vesicle Pools during Maturation of Hippocampal Synapses , 2002, The Journal of Neuroscience.

[30]  Ege T. Kavalali,et al.  Kinetics and regulation of fast endocytosis at hippocampal synapses , 1998, Nature.

[31]  Ege T. Kavalali,et al.  Rapid Reuse of Readily Releasable Pool Vesicles at Hippocampal Synapses , 2000, Neuron.

[32]  R. Tsien,et al.  Frequency-Dependent Kinetics and Prevalence of Kiss-and-Run and Reuse at Hippocampal Synapses Studied with Novel Quenching Methods , 2006, Neuron.

[33]  J. Albanesi,et al.  Essential Role of the Dynamin Pleckstrin Homology Domain in Receptor-Mediated Endocytosis , 1999, Molecular and Cellular Biology.

[34]  Zhiping P. Pang,et al.  Synaptotagmin-1 functions as the Ca2+-sensor for spontaneous release , 2009, Nature Neuroscience.

[35]  J. Hablitz,et al.  Kainate Modulates Presynaptic GABA Release from Two Vesicle Pools , 2008, The Journal of Neuroscience.

[36]  J. Burrone,et al.  A resting pool of vesicles is responsible for spontaneous vesicle fusion at the synapse , 2009, Nature Neuroscience.

[37]  M. Cousin,et al.  Activity-Dependent Control of Slow Synaptic Vesicle Endocytosis by Cyclin-Dependent Kinase 5 , 2007, The Journal of Neuroscience.

[38]  P. De Camilli,et al.  A Selective Activity-Dependent Requirement for Dynamin 1 in Synaptic Vesicle Endocytosis , 2007, Science.

[39]  E. Schuman,et al.  Postsynaptic Decoding of Neural Activity: eEF2 as a Biochemical Sensor Coupling Miniature Synaptic Transmission to Local Protein Synthesis , 2007, Neuron.

[40]  T. Murphy,et al.  Optical Postsynaptic Measurement of Vesicle Release Rates for Hippocampal Synapses Undergoing Asynchronous Release during Train Stimulation , 2004, The Journal of Neuroscience.

[41]  K. Moulder,et al.  Reluctant Vesicles Contribute to the Total Readily Releasable Pool in Glutamatergic Hippocampal Neurons , 2005, The Journal of Neuroscience.

[42]  Keng-mean Lin,et al.  Synergistic Activation of Dynamin GTPase by Grb2 and Phosphoinositides* , 1998, The Journal of Biological Chemistry.

[43]  Yildirim Sara,et al.  Fast Vesicle Recycling Supports Neurotransmission during Sustained Stimulation at Hippocampal Synapses , 2002, The Journal of Neuroscience.

[44]  Takeshi Sakaba,et al.  Multiple Roles of Calcium Ions in the Regulation of Neurotransmitter Release , 2008, Neuron.

[45]  R. S. Wilkinson,et al.  Vesicles in snake motor terminals comprise one functional pool and utilize a single recycling strategy at all stimulus frequencies , 2005, The Journal of physiology.

[46]  W. Betz,et al.  Imaging synaptic vesicle exocytosis and endocytosis with FM dyes , 2007, Nature Protocols.

[47]  E. Schuman,et al.  Partitioning the Synaptic Landscape: Distinct Microdomains for Spontaneous and Spike-Triggered Neurotransmission , 2009, Science Signaling.

[48]  D. Atasoy,et al.  Fast Synaptic Vesicle Reuse Slows the Rate of Synaptic Depression in the CA1 Region of Hippocampus , 2007, The Journal of Neuroscience.

[49]  H. Krämer,et al.  Dynamin-independent synaptic vesicle retrieval? , 2008, Nature Neuroscience.

[50]  E. Kavalali,et al.  Leaky synapses: Regulation of spontaneous neurotransmission in central synapses , 2009, Neuroscience.

[51]  Stefan Hefft,et al.  Asynchronous GABA release generates long-lasting inhibition at a hippocampal interneuron–principal neuron synapse , 2005, Nature Neuroscience.

[52]  Lindsey L. Glickfeld,et al.  Presynaptic homeostasis at CNS nerve terminals compensates for lack of a key Ca2+ entry pathway. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[53]  K. Moulder,et al.  Vesicle Pool Heterogeneity at Hippocampal Glutamate and GABA Synapses , 2007, The Journal of Neuroscience.

[54]  F. Kawasaki,et al.  Fast synaptic fatigue in shibire mutants reveals a rapid requirement for dynamin in synaptic vesicle membrane trafficking , 2000, Nature Neuroscience.

[55]  William J Tyler,et al.  Synaptic vesicle recycling studied in transgenic mice expressing synaptopHluorin , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[56]  C. Guatimosim,et al.  Two Endocytic Recycling Routes Selectively Fill Two Vesicle Pools in Frog Motor Nerve Terminals , 2000, Neuron.

[57]  A. Gilman,et al.  The effect of GTP and Mg2+ on the GTPase activity and the fluorescent properties of Go. , 1987, The Journal of biological chemistry.

[58]  Xinran Liu,et al.  Cholesterol‐dependent balance between evoked and spontaneous synaptic vesicle recycling , 2007, The Journal of physiology.

[59]  K. Ikeda,et al.  Contribution of active zone subpopulation of vesicles to evoked and spontaneous release. , 1999, Journal of neurophysiology.

[60]  K. Ikeda,et al.  Synaptic vesicles have two distinct recycling pathways , 1996, The Journal of cell biology.

[61]  T. A. Ryan,et al.  Calcium accelerates endocytosis of vSNAREs at hippocampal synapses , 2001, Nature Neuroscience.