Exact solitary wave solutions for a discrete lambdaphi4 field theory in 1+1 dimensions.

We have found exact, periodic, time-dependent solitary wave solutions of a discrete phi4 field theory model. For finite lattices, depending on whether one is considering a repulsive or attractive case, the solutions are Jacobi elliptic functions, either sn (x,m) [which reduce to the kink function tanh (x) for m-->1 ], or they are dn (x,m) and cn (x,m) [which reduce to the pulse function sech (x) for m-->1 ]. We have studied the stability of these solutions numerically, and we find that our solutions are linearly stable in most cases. We show that this model is a Hamiltonian system, and that the effective Peierls-Nabarro barrier due to discreteness is zero not only for the two localized modes but even for all three periodic solutions. We also present results of numerical simulations of scattering of kink-antikink and pulse-antipulse solitary wave solutions.

[1]  Ryogo Hirota,et al.  Nonlinear Partial Difference Equations III; Discrete Sine-Gordon Equation , 1977 .

[2]  Peyrard,et al.  Energy localization in nonlinear lattices. , 1993, Physical review letters.

[3]  A Smerzi,et al.  Discrete solitons and breathers with dilute Bose-Einstein condensates. , 2001, Physical review letters.

[4]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[5]  J. S. Aitchison,et al.  Discrete Spatial Optical Solitons in Waveguide Arrays , 1998 .

[6]  P. Kevrekidis On a class of discretizations of Hamiltonian nonlinear partial differential equations , 2003 .

[7]  Mark J. Ablowitz,et al.  Nonlinear differential−difference equations , 1975 .

[8]  S Gatz,et al.  Soliton propagation and soliton collision in double-doped fibers with a non-Kerr-like nonlinear refractive-index change. , 1992, Optics letters.

[9]  A. Khare,et al.  Cyclic identities for Jacobi elliptic and related functions , 2003 .

[10]  Exact solutions of the saturable discrete nonlinear Schrödinger equation , 2004, nlin/0409057.

[11]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[12]  M. Ablowitz,et al.  Nonlinear differential–difference equations and Fourier analysis , 1976 .

[13]  Morikazu Toda,et al.  Studies of a non-linear lattice , 1975 .

[14]  Local identities involving Jacobi elliptic functions , 2003, math-ph/0306028.

[15]  Kivshar,et al.  Nonlinear dynamics of the Frenkel-Kontorova model with impurities. , 1991, Physical review. B, Condensed matter.

[16]  S. Aubry A unified approach to the interpretation of displacive and order–disorder systems. II. Displacive systems , 1976 .

[17]  Bishop,et al.  Amplitude breathers in conjugated polymers. , 1989, Physical review. B, Condensed matter.

[18]  S. Orfanidis Discrete sine-Gordon equations , 1978 .

[19]  Michel Peyrard,et al.  Kink dynamics in the highly discrete sine-Gordon system , 1984 .

[20]  G. Berman,et al.  The Fermi-Pasta-Ulam problem: fifty years of progress. , 2004, Chaos.

[21]  J. R. Schrieffer,et al.  Dynamics and statistical mechanics of a one-dimensional model Hamiltonian for structural phase transitions , 1974 .

[22]  Paul F. Byrd,et al.  Handbook of elliptic integrals for engineers and scientists , 1971 .

[23]  Y. Kivshar,et al.  Peierls-Nabarro potential barrier for highly localized nonlinear modes. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[24]  L. Bettencourt,et al.  Relativistic hydrodynamic scaling from the dynamics of quantum field theory. , 2002, Physical review letters.

[25]  J. Herrmann,et al.  Soliton propagation in materials with saturable nonlinearity , 1991 .

[26]  A. Protogenov,et al.  Equations of motion and conserved quantities in non-Abelian discrete integrable models , 1999 .

[27]  H. Mikeska Solitons in a one-dimensional magnet with an easy plane , 1977 .

[28]  H. Capel,et al.  Integrable quantum mappings and non-ultralocal Yang-Baxter structures , 1992 .

[29]  Joseph Ford,et al.  The Fermi-Pasta-Ulam problem: Paradox turns discovery , 1992 .

[30]  Kim Ø. Rasmussen,et al.  THE DISCRETE NONLINEAR SCHRÖDINGER EQUATION: A SURVEY OF RECENT RESULTS , 2001 .

[31]  A. Scott,et al.  The soliton: A new concept in applied science , 1973 .

[32]  Cyclic identities involving Jacobi elliptic functions , 2002, math-ph/0201004.

[33]  N. Cabrera,et al.  Motion of a Frenkel-Kontorowa Dislocation in a One-Dimensional Crystal , 1965 .