Microgravity effects on the electrochemical oxidation of ammonia: A parabolic flight experiment

[1]  E. Chassaing,et al.  Electrodeposition experiments in microgravity conditions , 2011 .

[2]  D. Bejan,et al.  Mechanism of electrochemical oxidation of ammonia , 2011 .

[3]  R. Lan,et al.  Direct ammonia alkaline anion-exchange membrane fuel cells , 2010 .

[4]  H. Matsushima,et al.  Single bubble growth during water electrolysis under microgravity , 2009 .

[5]  Elizabeth J. Biddinger,et al.  Effect of catalyst on electrolysis of ammonia effluents , 2008 .

[6]  Fang Ye,et al.  Two-phase Flow in Fuel Cells in Short-term Microgravity Condition , 2008 .

[7]  G. Botte,et al.  On-board hydrogen storage and production: An application of ammonia electrolysis , 2008 .

[8]  Y. F. Cheng,et al.  Fabrication by electrolytic deposition of platinum black electrocatalyst for oxidation of ammonia in alkaline solution , 2008 .

[9]  V. Montiel,et al.  Screening of electrocatalysts for direct ammonia fuel cell: Ammonia oxidation on PtMe (Me: Ir, Rh, Pd, Ru) and preferentially oriented Pt(1 0 0) nanoparticles , 2007 .

[10]  G. Botte,et al.  Hydrogen Production from the Electro-oxidation of Ammonia Catalyzed by Platinum and Rhodium on Raney Nickel Substrate , 2006 .

[11]  H. Matsushima,et al.  Ohmic Resistance Measurement of Bubble Froth Layer in Water Electrolysis under Microgravity , 2006 .

[12]  M. Mognato,et al.  Modeled microgravity affects cell survival and HPRT mutant frequency, but not the expression of DNA repair genes in human lymphocytes irradiated with ionising radiation. , 2005, Mutation research.

[13]  V. Montiel,et al.  Ammonia selective oxidation on Pt(100) sites in an alkaline medium. , 2005, The journal of physical chemistry. B.

[14]  Y. Katayama,et al.  A rotating disk electrode study on the ammonia oxidation , 2005 .

[15]  G. Botte,et al.  On the use of ammonia electrolysis for hydrogen production , 2005 .

[16]  Richard I. Masel,et al.  Development of a microreactor for the production of hydrogen from ammonia , 2004 .

[17]  P. Rodríguez,et al.  SHAPE-DEPENDENT ELECTROCATALYSIS: AMMONIA OXIDATION ON PLATINUM NANOPARTICLES WITH PREFERENTIAL (1 0 0) SURFACES , 2004 .

[18]  H. Matsushima,et al.  Water electrolysis under microgravity: Part 1. Experimental technique , 2003 .

[19]  M. Gershwin,et al.  Microgravity and immune responsiveness: implications for space travel. , 2002, Nutrition.

[20]  B. Lorber,et al.  Nucleation and growth of thaumatin crystals within a gel under microgravity on STS-95 mission vs. under Earth's gravity , 2001 .

[21]  van Ra Rutger Santen,et al.  The role of adsorbates in the electrochemical oxidation of ammonia on noble and transition metal electrodes , 2001 .

[22]  Zhong Lin Wang,et al.  “Cubic” Colloidal Platinum Nanoparticles , 1996 .

[23]  J. Ditterich,et al.  In-situ organization of nanoparticles by scanning force microscopy under terrestrial and microgravity conditions , 1993 .

[24]  A. Negishi,et al.  Water electrolysis under microgravity condition by parabolic flight , 1993 .

[25]  Heinz Gerischer,et al.  Untersuchungen Zur anodischen Oxidation von Ammoniak an Platin-Elektroden , 1970 .

[26]  J. Solla-Gullón,et al.  Evidence by SERS of azide anion participation in ammonia electrooxidation in alkaline medium on nanostructured Pt electrodes , 2006 .

[27]  V. Montiel,et al.  Selective electrocatalysis of ammonia oxidation on Pt(100) sites in alkaline medium , 2003 .

[28]  M. Kamimoto,et al.  Investigation of electrochemical hydrogen evolution under microgravity condition , 1998 .

[29]  W. Vielstich,et al.  DEMS-cyclic voltammetry investigation of the electrochemistry of nitrogen compounds in 0.5 M potassium hydroxide , 1994 .