An averaging trick for smooth actions of compact quantum groups on manifolds
暂无分享,去创建一个
[1] V. Gayral,et al. Deformation quantization for actions of Qpd , 2015 .
[2] Debashish Goswami,et al. Quantum Isometry Groups of Noncommutative Manifolds Obtained by Deformation Using Dual Unitary 2-Cocycles ? , 2013, 1307.4850.
[3] Huichi Huang. Faithful compact quantum group actions on connected compact metrizable spaces , 2012, 1202.1175.
[4] T. Banica,et al. Quantum isometries and group dual subgroups , 2012, 1201.3392.
[5] Debashish Goswami,et al. Quantum Isometries and Noncommutative Spheres , 2009, 0905.3814.
[6] Adam G. Skalski,et al. Quantum Isometry Groups of 0- Dimensional Manifolds , 2008, 0807.4288.
[7] Debashish Goswami,et al. Quantum Isometry Groups: Examples and Computations , 2007, 0707.2648.
[8] Debashish Goswami. Quantum Group of Isometries in Classical and Noncommutative Geometry , 2007, 0704.0041.
[9] T. Banica. Quantum automorphism groups of small metric spaces , 2003, math/0304025.
[10] Julien Bichon,et al. Quantum automorphism groups of finite graphs , 1999, math/9902029.
[11] Shuzhou Wang,et al. Quantum Symmetry Groups of Finite Spaces , 1998, math/9807091.
[12] Ann Maes,et al. Notes on Compact Quantum Groups , 1998, math/9803122.
[13] M. Rieffel. Deformation Quantization for Actions of R ]D , 1993 .
[14] S. Woronowicz,et al. Compact matrix pseudogroups , 1987 .
[15] Andrew Lesniewski,et al. Noncommutative Geometry , 1997 .