Polarization angle swings in blazars: The case of 3C 279

International Max Planck Research School (IMPRS) for Astronomy and Astrophysics at the Max Planck Institute for Radio Astronomy; Universities of Bonn and Cologne; Academy of Finland project [274477]; NASA Fermi GI grant [NNX11AQ03G]; Russian Foundation for Basic Research [13-02-12103, 14-02-31789]; RFBR [12-02-01237a]; UNAM DGAPA-PAPIIT [IN116211-3]; Ramon y Cajal grant of the Spanish Ministry of Economy and Competitiveness (MINECO); Spanish Ministry of Economy and Competitiveness (Spain); Regional Government of Andalucia (Spain) [AYA2010-14844, AYA2013-40825-P, P09-FQM-4784]; Fermi Guest Investigator [NNX08AW56G, NNX09AU10G, NNX12AO93G, NNX14AQ58G]; Russian RFBR [15-02-00949]; St. Petersburg University research [6.38.335.2015]; Shota Rustaveli National Science Foundation [FR/638/6-320/12, 31/77]

[1]  A. Mahabal,et al.  RoboPol: First season rotations of optical polarization plane in blazars , 2015, 1505.07467.

[2]  F. Guo,et al.  POLARIZATION SWINGS REVEAL MAGNETIC ENERGY DISSIPATION IN BLAZARS , 2015, 1502.07825.

[3]  J. Chiang,et al.  RAPID VARIABILITY OF BLAZAR 3C 279 DURING FLARING STATES IN 2013−2014 WITH JOINT FERMI-LAT, NuSTAR, SWIFT, AND GROUND-BASED MULTI-WAVELENGTH OBSERVATIONS , 2015, 1502.04699.

[4]  L. Sironi,et al.  Relativistic Jets Shine through Shocks or Magnetic Reconnection , 2015, 1502.01021.

[5]  D. Hiriart,et al.  ROTATION OF THE OPTICAL POLARIZATION ANGLE ASSOCIATED WITH THE 2008 γ-RAY FLARE OF BLAZAR W COMAE , 2014, 1408.1339.

[6]  M. Boettcher,et al.  SYNCHROTRON POLARIZATION IN BLAZARS , 2014, 1401.7138.

[7]  Engineering,et al.  MAGIC gamma-ray and multi-frequency observations of flat spectrum radio quasar PKS 1510−089 in early 2012 , 2014, Astronomy & Astrophysics.

[8]  Astronomy,et al.  MAGIC observations and multifrequency properties of the flat spectrum radio quasar 3C 279 in 2011 , 2013, 1311.2833.

[9]  O. King,et al.  The RoboPol optical polarization survey of gamma-ray-loud blazars , 2013, 1311.3304.

[10]  O. King,et al.  The RoboPol pipeline and control system , 2013, 1310.7555.

[11]  A. Marscher TURBULENT, EXTREME MULTI-ZONE MODEL FOR SIMULATING FLUX AND POLARIZATION VARIABILITY IN BLAZARS , 2013, 1311.7665.

[12]  Michael Mommert,et al.  LONG-TERM OPTICAL POLARIZATION VARIABILITY OF THE TeV BLAZAR 1ES 1959+650 , 2013, 1304.2819.

[13]  V.M.Larionov,et al.  THE OUTBURST OF THE BLAZAR S5 0716+71 IN 2011 OCTOBER: SHOCK IN A HELICAL JET , 2013, 1303.2218.

[14]  M. Begelman,et al.  The effect of poloidal velocity shear on the local development of current-driven instabilities , 2012, 1208.0007.

[15]  J. Isler,et al.  SMARTS OPTICAL AND INFRARED MONITORING OF 12 GAMMA-RAY BRIGHT BLAZARS , 2012, 1201.4380.

[16]  A. Marscher,et al.  MAPCAT: MONITORING AGN WITH POLARIMETRY AT THE CALAR ALTO TELESCOPES , 2011, 1111.6784.

[17]  Harvard,et al.  Efficient Generation of Jets from Magnetically Arrested Accretion on a Rapidly Spinning Black Hole , 2011, 1108.0412.

[18]  M. Sasada Prominent polarized flares of the blazars AO 0235+164 and PKS 1510–089 , 2011, 1102.1856.

[19]  M. Longair High Energy Astrophysics: High energy astrophysics – an introduction , 2011 .

[20]  K. Nalewajko POLARIZATION SWINGS FROM CURVED TRAJECTORIES OF THE EMITTING REGIONS , 2010, 1208.5472.

[21]  Paul S. Smith,et al.  FLARING BEHAVIOR OF THE QUASAR 3C 454.3 ACROSS THE ELECTROMAGNETIC SPECTRUM , 2010, 1003.4293.

[22]  P. Giommi,et al.  A change in the optical polarization associated with a γ-ray flare in the blazar 3C 279 , 2010 .

[23]  Paul S. Smith,et al.  PROBING THE INNER JET OF THE QUASAR PKS 1510−089 WITH MULTI-WAVEBAND MONITORING DURING STRONG GAMMA-RAY ACTIVITY , 2010, 1001.2574.

[24]  P. Giommi,et al.  Results of WEBT, VLBA and RXTE monitoring of 3C 279 during 2006-2007 ⋆ , 2008, 0810.4261.

[25]  Paul S. Smith,et al.  The inner jet of an active galactic nucleus as revealed by a radio-to-γ-ray outburst , 2008, Nature.

[26]  L. Stawarz,et al.  On the Momentum Diffusion of Radiating Ultrarelativistic Electrons in a Turbulent Magnetic Field , 2008, 0803.0989.

[27]  S. Komissarov,et al.  Magnetic acceleration of relativistic active galactic nucleus jets , 2007 .

[28]  Paul S. Smith,et al.  Rapid Multiwaveband Polarization Variability in the Quasar PKS 0420–014: Optical Emission from the Compact Radio Jet , 2007, astro-ph/0703118.

[29]  N. Vlahakis,et al.  Magnetic Driving of Relativistic Outflows in Active Galactic Nuclei. I. Interpretation of Parsec-Scale Accelerations , 2003, astro-ph/0310747.

[30]  M. Kidger,et al.  Optical and Near-Infrared Calibration of AGN Field Stars: An All-Sky Network of Faint Stars Calibrated on the Landolt System , 2001 .

[31]  T. W. Jones,et al.  Polarization as a probe of magnetic field and plasma properties of compact radio sources: simulation of relativistic jets , 1988 .

[32]  T. Jones,et al.  Magnetic field structures in active compact radio sources , 1985 .

[33]  A. Choudhuri,et al.  A model of the polarization position-angle swings in BL Lacertae objects , 1985 .

[34]  C. Impey,et al.  A polarization flare in OJ 287. , 1984 .

[35]  C. Bjornsson Polarization properties of a source in relativistic motion. , 1982 .

[36]  R. Laing A model for the magnetic-field structure in extended radio sources , 1980 .

[37]  T. Kinman Optical Polarization Measures of Five Radio Sources , 1967 .