Complexity Framework For Forbidden Subgraphs

For any particular class of graphs, algorithms for computational problems restricted to the class often rely on structural properties that depend on the specific problem at hand. This begs the question if a large set of such results can be explained by some common problem conditions. We propose such conditions for $HH$-subgraph-free graphs. For a set of graphs $HH$, a graph $G$ is $HH$-subgraph-free if $G$ does not contain any of graph from $H$ as a subgraph. Our conditions are easy to state. A graph problem must be efficiently solvable on graphs of bounded treewidth, computationally hard on subcubic graphs, and computational hardness must be preserved under edge subdivision of subcubic graphs. Our meta-classification says that if a graph problem satisfies all three conditions, then for every finite set $HH$, it is ``efficiently solvable'' on $HH$-subgraph-free graphs if $HH$ contains a disjoint union of one or more paths and subdivided claws, and is ``computationally hard'' otherwise. We illustrate the broad applicability of our meta-classification by obtaining a dichotomy between polynomial-time solvability and NP-completeness for many well-known partitioning, covering and packing problems, network design problems and width parameter problems. For other problems, we obtain a dichotomy between almost-linear-time solvability and having no subquadratic-time algorithm (conditioned on some hardness hypotheses). The proposed framework thus gives a simple pathway to determine the complexity of graph problems on $HH$-subgraph-free graphs. This is confirmed even more by the fact that along the way, we uncover and resolve several open questions from the literature.

[1]  Jelle J. Oostveen,et al.  Complexity Framework for Forbidden Subgraphs IV: The Steiner Forest Problem , 2023, ArXiv.

[2]  D. Paulusma,et al.  Complexity Framework for Forbidden Subgraphs III: When Problems are Tractable on Subcubic Graphs , 2023, MFCS.

[3]  Édouard Bonnet,et al.  Cutting Barnette graphs perfectly is hard , 2023, WG.

[4]  Paloma T. Lima,et al.  Treewidth is NP-Complete on Cubic Graphs (and related results) , 2023, ArXiv.

[5]  M. Chudnovsky,et al.  Induced Subgraphs and Tree Decompositions VIII: Excluding a Forest in (Theta, Prism)-Free Graphs , 2023, Combinatorica.

[6]  M. Chudnovsky,et al.  Induced subgraphs and tree decompositions VII. Basic obstructions in H-free graphs , 2022, J. Comb. Theory, Ser. B.

[7]  D. Paulusma,et al.  Complexity Framework for Forbidden Subgraphs II: When Hardness Is Not Preserved under Edge Subdivision , 2022, 2211.14214.

[8]  Robert Hickingbotham Induced Subgraphs and Path Decompositions , 2022, Electron. J. Comb..

[9]  T. Korhonen Grid Induced Minor Theorem for Graphs of Small Degree , 2022, J. Comb. Theory, Ser. B.

[10]  M. Chudnovsky,et al.  Induced Subgraphs and Tree Decompositions IV. (Even Hole, Diamond, Pyramid)-Free Graphs , 2022, Electron. J. Comb..

[11]  Jan Arne Telle,et al.  The Perfect Matching Cut Problem Revisited , 2021, WG.

[12]  D. Paulusma,et al.  Partitioning H-Free Graphs of Bounded Diameter , 2021, ISAAC.

[13]  Florent Foucaud,et al.  Complexity and algorithms for injective edge-coloring in graphs , 2021, Inf. Process. Lett..

[14]  Wensong Lin,et al.  On maximum P3-packing in claw-free subcubic graphs , 2021, J. Comb. Optim..

[15]  Barnaby Martin,et al.  Hard Problems That Quickly Become Very Easy , 2020, Inf. Process. Lett..

[16]  V. Lozin,et al.  Tree-width dichotomy , 2020, Eur. J. Comb..

[17]  M. Chudnovsky,et al.  Induced subgraphs and tree decompositions I. Even-hole-free graphs of bounded degree , 2020, J. Comb. Theory, Ser. B.

[18]  D. Paulusma,et al.  Acyclic, Star and Injective Colouring: A Complexity Picture for H-Free Graphs , 2020, ESA.

[19]  C. Groenland,et al.  Approximating Pathwidth for Graphs of Small Treewidth , 2020, SODA.

[20]  Jan Arne Telle,et al.  Mim-Width I. Induced path problems , 2020, Discret. Appl. Math..

[21]  Erik Jan van Leeuwen,et al.  Steiner Trees for Hereditary Graph Classes: a Treewidth Perspective , 2020, Theor. Comput. Sci..

[22]  Shenwei Huang,et al.  Complexity of Ck-Coloring in Hereditary Classes of Graphs , 2019, ESA.

[23]  Jan Arne Telle,et al.  FPT algorithms for domination in sparse graphs and beyond , 2019, Theor. Comput. Sci..

[24]  Yota Otachi,et al.  Subgraph Isomorphism on Graph Classes that Exclude a Substructure , 2019, Algorithmica.

[25]  V. V. Williams ON SOME FINE-GRAINED QUESTIONS IN ALGORITHMS AND COMPLEXITY , 2019, Proceedings of the International Congress of Mathematicians (ICM 2018).

[26]  Daniël Paulusma,et al.  Clique-Width for Hereditary Graph Classes , 2019, BCC.

[27]  Daniël Paulusma,et al.  Contracting to a Longest Path in H-Free Graphs , 2018, ISAAC.

[28]  Daniel Weissauer,et al.  In absence of long chordless cycles, large tree-width becomes a local phenomenon , 2018, J. Comb. Theory, Ser. B.

[29]  Fedor V. Fomin,et al.  Excluded Grid Minors and Efficient Polynomial-Time Approximation Schemes , 2018, J. ACM.

[30]  Andrea Munaro,et al.  Boundary classes for graph problems involving non-local properties , 2017, Theor. Comput. Sci..

[31]  Michal Pilipczuk,et al.  Polynomial-time Algorithm for Maximum Weight Independent Set on P6-free Graphs , 2017, SODA.

[32]  Daniël Paulusma,et al.  Minimum connected transversals in graphs: New hardness results and tractable cases using the price of connectivity , 2017, Theor. Comput. Sci..

[33]  Haim Kaplan,et al.  Voronoi Diagrams on Planar Graphs, and Computing the Diameter in Deterministic Õ(n5/3) Time , 2017, SODA.

[34]  Dmitriy Zhuk,et al.  A Proof of CSP Dichotomy Conjecture , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[35]  Andrei A. Bulatov,et al.  A Dichotomy Theorem for Nonuniform CSPs , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[36]  Jacob Evald,et al.  Tight Hardness Results for Distance and Centrality Problems in Constant Degree Graphs , 2016, ArXiv.

[37]  Janosch Döcker,et al.  On planar variants of the monotone satisfiability problem with bounded variable appearances , 2016, Int. J. Found. Comput. Sci..

[38]  Joshua R. Wang,et al.  Approximation and Fixed Parameter Subquadratic Algorithms for Radius and Diameter , 2015, ArXiv.

[39]  Takehiro Ito,et al.  Algorithms for the Independent Feedback Vertex Set Problem , 2015, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[40]  Konrad Dabrowski,et al.  Clique-Width of Graph Classes Defined by Two Forbidden Induced Subgraphs , 2014, Comput. J..

[41]  Petr A. Golovach,et al.  List coloring in the absence of two subgraphs , 2013, Discret. Appl. Math..

[42]  M. Vatshelle New Width Parameters of Graphs , 2012 .

[43]  Petr A. Golovach,et al.  Coloring graphs characterized by a forbidden subgraph , 2012, Discret. Appl. Math..

[44]  Vadim V. Lozin,et al.  Boundary properties of graphs for algorithmic graph problems , 2011, Theor. Comput. Sci..

[45]  Jaroslav Nesetril,et al.  On nowhere dense graphs , 2011, Eur. J. Comb..

[46]  Marcin Kaminski,et al.  Max-cut and Containment Relations in Graphs , 2010, Theor. Comput. Sci..

[47]  B. Mohar,et al.  Graph minors XXIII. Nash-Williams' immersion conjecture , 2010, J. Comb. Theory B.

[48]  Mohammad Taghi Hajiaghayi,et al.  Approximation Schemes for Steiner Forest on Planar Graphs and Graphs of Bounded Treewidth , 2009, JACM.

[49]  Gary MacGillivray,et al.  On the complexity of H-colouring planar graphs , 2009, Discret. Math..

[50]  Dimitrios M. Thilikos,et al.  (Meta) Kernelization , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[51]  Martin Grohe,et al.  Algorithmic Meta Theorems , 2008, WG.

[52]  Oded Goldreich Computational complexity: a conceptual perspective , 2008, SIGA.

[53]  Vadim V. Lozin,et al.  NP-hard graph problems and boundary classes of graphs , 2007, Theor. Comput. Sci..

[54]  Stephan Kreutzer,et al.  Approximation Schemes for First-Order Definable Optimisation Problems , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[55]  Ryan Williams,et al.  A new algorithm for optimal 2-constraint satisfaction and its implications , 2005, Theor. Comput. Sci..

[56]  Erik D. Demaine,et al.  Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs , 2005, JACM.

[57]  Bruce A. Reed,et al.  Planar graph bipartization in linear time , 2005, Discret. Appl. Math..

[58]  Glenn G. Chappell,et al.  Coloring with no 2-Colored P4's , 2004, Electron. J. Comb..

[59]  V. E. Alekseev,et al.  On easy and hard hereditary classes of graphs with respect to the independent set problem , 2003, Discret. Appl. Math..

[60]  Martin Grohe,et al.  The complexity of homomorphism and constraint satisfaction problems seen from the other side , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[61]  Paul S. Bonsma,et al.  The complexity of the matching‐cut problem for planar graphs and other graph classes , 2003, J. Graph Theory.

[62]  Vadim V. Lozin,et al.  On the Clique-Width of Graphs in Hereditary Classes , 2002, ISAAC.

[63]  Bojan Mohar,et al.  Face Covers and the Genus Problem for Apex Graphs , 2001, J. Comb. Theory, Ser. B.

[64]  Jaroslav Nesetril,et al.  The complexity of H-colouring of bounded degree graphs , 2000, Discret. Math..

[65]  Bruno Courcelle,et al.  Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..

[66]  Jan Arne Telle,et al.  Algorithms for Vertex Partitioning Problems on Partial k-Trees , 1997, SIAM J. Discret. Math..

[67]  Detlef Seese,et al.  Linear time computable problems and first-order descriptions , 1996, Mathematical Structures in Computer Science.

[68]  John R. Gilbert,et al.  Approximating Treewidth, Pathwidth, Frontsize, and Shortest Elimination Tree , 1995, J. Algorithms.

[69]  Ivan Hal Sudborough,et al.  The Vertex Separation and Search Number of a Graph , 1994, Inf. Comput..

[70]  Mihalis Yannakakis,et al.  The Complexity of Multiterminal Cuts , 1994, SIAM J. Comput..

[71]  Ton Kloks,et al.  Efficient and Constructive Algorithms for the Pathwidth and Treewidth of Graphs , 1993, J. Algorithms.

[72]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[73]  MATTHIAS MIDDENDORF,et al.  On the complexity of the disjoint paths problem , 1993, Comb..

[74]  Nancy G. Kinnersley,et al.  The Vertex Separation Number of a Graph equals its Path-Width , 1992, Inf. Process. Lett..

[75]  Klaus Jansen,et al.  Generalized Coloring for Tree-like Graphs , 1992, Discret. Appl. Math..

[76]  Robin Thomas,et al.  Quickly excluding a forest , 1991, J. Comb. Theory, Ser. B.

[77]  Detlef Seese,et al.  Easy Problems for Tree-Decomposable Graphs , 1991, J. Algorithms.

[78]  Charles J. Colbourn,et al.  Unit disk graphs , 1991, Discret. Math..

[79]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[80]  S. Arnborg,et al.  Linear time algorithms for NP-hard problems restricted to partial k-trees , 1989, Discret. Appl. Math..

[81]  Rina Dechter,et al.  Tree Clustering for Constraint Networks , 1989, Artif. Intell..

[82]  Yoji Kajitani,et al.  On the nonseparating independent set problem and feedback set problem for graphs with no vertex degree exceeding three , 1988, Discret. Math..

[83]  Ivan Hal Sudborough,et al.  Min Cut is NP-Complete for Edge Weigthed Trees , 1986, ICALP.

[84]  Paul D. Seymour,et al.  Graph minors. V. Excluding a planar graph , 1986, J. Comb. Theory B.

[85]  Vasek Chvátal,et al.  Recognizing decomposable graphs , 1984, J. Graph Theory.

[86]  Paul D. Seymour,et al.  Graph minors. III. Planar tree-width , 1984, J. Comb. Theory B.

[87]  Mihalis Yannakakis,et al.  Edge Dominating Sets in Graphs , 1980 .

[88]  Mihalis Yannakakis,et al.  Node-and edge-deletion NP-complete problems , 1978, STOC.

[89]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[90]  David S. Johnson,et al.  The Rectilinear Steiner Tree Problem is NP Complete , 1977, SIAM Journal of Applied Mathematics.

[91]  David S. Johnson,et al.  The Planar Hamiltonian Circuit Problem is NP-Complete , 1976, SIAM J. Comput..

[92]  David S. Johnson,et al.  Some simplified NP-complete problems , 1974, STOC '74.

[93]  R. L. Brooks On colouring the nodes of a network , 1941, Mathematical Proceedings of the Cambridge Philosophical Society.

[94]  M. Sharir,et al.  Voronoi diagrams on planar graphs, and computing the diameter in deterministic Õ(n) time∗ , 2020 .

[95]  Frank Harary,et al.  Graph Theory , 2016 .

[96]  Chihao Zhang,et al.  Multi-Multiway Cut Problem on Graphs of Bounded Branch Width , 2013, FAW-AAIM.

[97]  Miroslav Chlebík,et al.  The Complexity of Combinatorial Optimization Problems on d-Dimensional Boxes , 2007, SIAM J. Discret. Math..

[98]  Bruno Courcelle,et al.  The Monadic Second-order Logic of Graphs VI: On Several Representations of Graphs by Relational Structures , 1995, Discret. Appl. Math..

[99]  Hans L. Bodlaender,et al.  On Linear Time Minor Tests with Depth-First Search , 1993, J. Algorithms.

[100]  Hans L. Bodlaendery Eecient and Constructive Algorithms for the Pathwidth and Treewidth of Graphs , 1993 .

[101]  Ewald Speckenmeyer,et al.  Untersuchungen zum Feedback-vertex-set-Problem in ungerichteten Graphen , 1983 .

[102]  David S. Johnson,et al.  The NP-Completeness Column: An Ongoing Guide , 1982, J. Algorithms.

[103]  David P. Dailey Uniqueness of colorability and colorability of planar 4-regular graphs are NP-complete , 1980, Discret. Math..

[104]  S. Poljak A note on stable sets and colorings of graphs , 1974 .

[105]  Siam J. CoMPtrr,et al.  FINDING A MAXIMUM CUT OF A PLANAR GRAPH IN POLYNOMIAL TIME * , 2022 .