Computer-aided de novo design and optimization of novel potential inhibitors of HIV-1 Nef protein

[1]  S. Moro,et al.  Hidden GPCR structural transitions addressed by multiple walker supervised molecular dynamics (mwSuMD) , 2023, bioRxiv.

[2]  S. Du,et al.  Antiretroviral Drug Discovery Targeting the HIV-1 Nef Virulence Factor , 2022, Viruses.

[3]  Deena Nath Gupta,et al.  Biochemical characterization and structure-based in silico screening of potent inhibitor molecules against the 1 cys peroxiredoxin of bacterioferritin comigratory protein family from Candidatus Liberibacter asiaticus , 2022, Journal of biomolecular structure & dynamics.

[4]  P. A. Valiente,et al.  gmx_MMPBSA: A New Tool to Perform End-State Free Energy Calculations with GROMACS. , 2021, Journal of chemical theory and computation.

[5]  S. Majumder,et al.  An insight into the binding mechanism of Viprinin and its morpholine and piperidine derivatives with HIV-1 Vpr: molecular dynamics simulation, principal component analysis and binding free energy calculation study , 2021, Journal of biomolecular structure & dynamics.

[6]  Balázs Zoltán Zsidó,et al.  The role of water in ligand binding. , 2020, Current opinion in structural biology.

[7]  T. Smithgall,et al.  Structure, function, and inhibitor targeting of HIV-1 Nef-effector kinase complexes , 2020, The Journal of Biological Chemistry.

[8]  Jacob D. Durrant,et al.  AutoGrow4: an open-source genetic algorithm for de novo drug design and lead optimization , 2020, Journal of Cheminformatics.

[9]  T. Smithgall,et al.  Tight-binding Hydroxypyrazole HIV-1 Nef Inhibitors Suppress Viral Replication in Donor Mononuclear Cells and Reverse Nef-mediated MHC-I downregulation. , 2019, ACS infectious diseases.

[10]  R. Dror,et al.  How Effectively Can Adaptive Sampling Methods Capture Spontaneous Ligand Binding? , 2019, Journal of chemical theory and computation.

[11]  A. Kitao,et al.  ColDock: Concentrated Ligand Docking with All-Atom Molecular Dynamics Simulation. , 2018, The journal of physical chemistry. B.

[12]  M. Sturlese,et al.  AquaMMapS: An Alternative Tool to Monitor the Role of Water Molecules During Protein–Ligand Association , 2018, ChemMedChem.

[13]  R. Ptak,et al.  A single β-octyl glucoside molecule induces HIV-1 Nef dimer formation in the absence of partner protein binding , 2018, PloS one.

[14]  Axel Rudling,et al.  Prediction of Ordered Water Molecules in Protein Binding Sites from Molecular Dynamics Simulations: The Impact of Ligand Binding on Hydration Networks , 2018, J. Chem. Inf. Model..

[15]  Gianni De Fabritiis,et al.  DeepSite: protein‐binding site predictor using 3D‐convolutional neural networks , 2017, Bioinform..

[16]  M. Soliman,et al.  Identification of Binding Mode and Prospective Structural Features of Novel Nef Protein Inhibitors as Potential Anti-HIV Drugs , 2016, Cell Biochemistry and Biophysics.

[17]  B. L. de Groot,et al.  CHARMM36m: an improved force field for folded and intrinsically disordered proteins , 2016, Nature Methods.

[18]  Alexander D. MacKerell,et al.  CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field , 2015, Journal of chemical theory and computation.

[19]  Thomas J Lane,et al.  MDTraj: a modern, open library for the analysis of molecular dynamics trajectories , 2014, bioRxiv.

[20]  John J. Irwin,et al.  ZINC 15 – Ligand Discovery for Everyone , 2015, J. Chem. Inf. Model..

[21]  Frank Noé,et al.  PyEMMA 2: A Software Package for Estimation, Validation, and Analysis of Markov Models. , 2015, Journal of chemical theory and computation.

[22]  T. Smithgall,et al.  Subtle Dynamic Changes Accompany Hck Activation by HIV-1 Nef and are Reversed by an Antiretroviral Kinase Inhibitor. , 2015, Biochemistry.

[23]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[24]  Yuanfei Wu,et al.  SERINC3 and SERINC5 restrict HIV-1 infectivity and are counteracted by Nef , 2015, Nature.

[25]  C. Simmerling,et al.  ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. , 2015, Journal of chemical theory and computation.

[26]  Dima Kozakov,et al.  The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins , 2015, Nature Protocols.

[27]  Didier Rognan,et al.  sc-PDB: a 3D-database of ligandable binding sites—10 years on , 2014, Nucleic Acids Res..

[28]  Joanne I. Yeh,et al.  Interaction with the Src Homology (SH3-SH2) Region of the Src-family Kinase Hck Structures the HIV-1 Nef Dimer for Kinase Activation and Effector Recruitment* , 2014, The Journal of Biological Chemistry.

[29]  T. Smithgall,et al.  Development and Validation of a High-Content Bimolecular Fluorescence Complementation Assay for Small-Molecule Inhibitors of HIV-1 Nef Dimerization , 2014, Journal of biomolecular screening.

[30]  K. Strebel HIV accessory proteins versus host restriction factors. , 2013, Current opinion in virology.

[31]  S. Satija,et al.  Conformational transition of membrane-associated terminally acylated HIV-1 Nef. , 2013, Structure.

[32]  Jing Huang,et al.  CHARMM36 all‐atom additive protein force field: Validation based on comparison to NMR data , 2013, J. Comput. Chem..

[33]  Joanne I. Yeh,et al.  Effector kinase coupling enables high-throughput screens for direct HIV-1 Nef antagonists with antiretroviral activity. , 2013, Chemistry & biology.

[34]  Holger Gohlke,et al.  MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. , 2012, Journal of chemical theory and computation.

[35]  Wim F Vranken,et al.  ACPYPE - AnteChamber PYthon Parser interfacE , 2012, BMC Research Notes.

[36]  T. Smithgall,et al.  Nef Alleles from All Major HIV-1 Clades Activate Src-Family Kinases and Enhance HIV-1 Replication in an Inhibitor-Sensitive Manner , 2012, PloS one.

[37]  John H. Morris,et al.  Global landscape of HIV–human protein complexes , 2011, Nature.

[38]  Chris Morley,et al.  Open Babel: An open chemical toolbox , 2011, J. Cheminformatics.

[39]  K. Saksela Interactions of the HIV/SIV pathogenicity factor Nef with SH3 domain-containing host cell proteins. , 2011, Current HIV research.

[40]  P. Jolicoeur The CD4C/HIV(Nef)transgenic model of AIDS. , 2011, Current HIV research.

[41]  Oliver Beckstein,et al.  MDAnalysis: A toolkit for the analysis of molecular dynamics simulations , 2011, J. Comput. Chem..

[42]  Jan H. Jensen,et al.  PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions. , 2011, Journal of chemical theory and computation.

[43]  Darryl Y Sasaki,et al.  Neutron reflectometry study of the conformation of HIV Nef bound to lipid membranes. , 2010, Biophysical journal.

[44]  R. Dror,et al.  Improved side-chain torsion potentials for the Amber ff99SB protein force field , 2010, Proteins.

[45]  J. Lazo,et al.  Chemical library screens targeting an HIV-1 accessory factor/host cell kinase complex identify novel antiretroviral compounds. , 2009, ACS chemical biology.

[46]  Arthur J. Olson,et al.  AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading , 2009, J. Comput. Chem..

[47]  M J Harvey,et al.  ACEMD: Accelerating Biomolecular Dynamics in the Microsecond Time Scale. , 2009, Journal of chemical theory and computation.

[48]  F. Guerlesquin,et al.  Protein–protein interaction inhibition (2P2I) combining high throughput and virtual screening: Application to the HIV-1 Nef protein , 2007, Proceedings of the National Academy of Sciences.

[49]  T. Smithgall,et al.  Oligomerization is required for HIV-1 Nef-induced activation of the Src family protein-tyrosine kinase, Hck. , 2004, Biochemistry.

[50]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[51]  Nathan A. Baker,et al.  PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations , 2004, Nucleic Acids Res..

[52]  A. Iwamoto,et al.  CSF-induced and HIV-1–mediated Distinct Regulation of Hck and C/EBPβ Represent a Heterogeneous Susceptibility of Monocyte-derived Macrophages to M-tropic HIV-1 Infection , 2003, The Journal of experimental medicine.

[53]  P. Hünenberger,et al.  A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations , 2001, J. Comput. Chem..

[54]  J. Kaldor,et al.  Characterization of Three nef-Defective Human Immunodeficiency Virus Type 1 Strains Associated with Long-Term Nonprogression , 2000, Journal of Virology.

[55]  K. Saksela,et al.  Interactions of HIV-1 NEF with cellular signal transducing proteins. , 2000, Frontiers in bioscience : a journal and virtual library.

[56]  K. Saksela,et al.  Induction of activator protein 1 (AP-1) in macrophages by human immunodeficiency virus type-1 NEF is a cell-type-specific response that requires both hck and MAPK signaling events. , 1999, Journal of molecular biology.

[57]  H. Kalbitzer,et al.  Structure of the anchor-domain of myristoylated and non-myristoylated HIV-1 Nef protein. , 1999, Journal of molecular biology.

[58]  A. Guimond,et al.  Nef Harbors a Major Determinant of Pathogenicity for an AIDS-like Disease Induced by HIV-1 in Transgenic Mice , 1998, Cell.

[59]  Mario Stevenson,et al.  SH3-mediated Hck Tyrosine Kinase Activation and Fibroblast Transformation by the Nef Protein of HIV-1* , 1997, The Journal of Biological Chemistry.

[60]  S. Grzesiek,et al.  Refined solution structure and backbone dynamics of HIV‐1 Nef , 1997, Protein science : a publication of the Protein Society.

[61]  J. Kuriyan,et al.  Activation of the Sire-family tyrosine kinase Hck by SH3 domain displacement , 1997, Nature.

[62]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[63]  John L. Sullivan,et al.  Absence of intact nef sequences in a long-term survivor with nonprogressive HIV-1 infection , 1995 .

[64]  B. Brooks,et al.  Langevin dynamics of peptides: The frictional dependence of isomerization rates of N‐acetylalanyl‐N′‐methylamide , 1992, Biopolymers.

[65]  S. Venkatesan,et al.  Nef protein of HIV-1 is a transcriptional repressor of HIV-1 LTR. , 1988, Science.

[66]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[67]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[68]  R. Goody,et al.  HIV-1 Nef membrane association depends on charge, curvature, composition and sequence. , 2010, Nature chemical biology.

[69]  Christian Dumas,et al.  Characterization and molecular basis of the oligomeric structure of HIV‐1 Nef protein , 2000, Protein science : a publication of the Protein Society.

[70]  William Smith,et al.  SHAKE, rattle, and roll: Efficient constraint algorithms for linked rigid bodies , 1998, J. Comput. Chem..