On the structure of Brieskorn lattice

the filtration F on Ox' The right hand side of (*) was first studied J f by Brieskorn [B] and we call it the Brieskorn lattice of M, and denote it by Mo. In fact, he defined the regular singular connection (called the Gauss-Manin connection) on Mo, which calculates the Milnor monodromy. We can easily verify that the connection V is compatible with the action of 9f on M as left Z>s,o-module, where t is the coordinate of S'. More precisely, the inverse of the action of Va/^resp.c^) is well-defined as a C-endomorphism of Mo(resp.M) and they coincide on F-nM by the isomorphism (*)

[1]  P. Cassou-Nogués Étude du comportement du polynôme de Bernstein lors d’une déformation à $\mu $ constant de $X^a + Y^b$ avec $(a, b) = 1$ , 1987 .

[2]  J. H. M. Steenbrink,et al.  Mixed Hodge Structure on the Vanishing Cohomology , 1977 .

[3]  Masaki Kashiwara,et al.  Vanishing cycle sheaves and holonomic systems of differential equations , 1983 .

[4]  M. Saito,et al.  Gauss-Manin system and mixed Hodge structure , 1982 .

[5]  Egbert Brieskorn,et al.  Die monodromie der isolierten singularitäten von hyperflächen , 1970 .

[6]  J. H. M. Steenbrink,et al.  On the mixed Hodge structure on the cohomology of the Milnor fibre , 1985 .

[7]  M. Saito,et al.  Exponents and Newton polyhedra of isolated hypersurface singularities , 1988 .

[8]  E. Looijenga On the semi-universal deformation of a simple-elliptic hypersurface singularity Part II: the discriminant , 1978 .

[9]  P. Deligne,et al.  Equations differentielles à points singuliers reguliers , 1970 .

[10]  M. Saito,et al.  Modules de Hodge Polarisables , 1988 .

[11]  A. Varchenko The complex exponent of a singularity does not change along strataµ = const , 1982 .

[12]  M. Saito Hodge filtrations on Gauss-Manin systems I , 1984 .

[13]  Masaki Kashiwara,et al.  B-functions and holonomic systems , 1976 .

[14]  Nicholas M. Katz,et al.  THE REGULARITY THEOREM IN ALGEBRAIC GEOMETRY , 1970 .

[15]  B. Malgrange,et al.  Le polynome de Bernstein d’une singularite isolee , 1975 .

[16]  Jean-Pierre Serre,et al.  Algèbre locale : multiplicités , 1957 .

[17]  柏原 正樹 Introduction to microlocal analysis , 1986 .

[18]  Déformations de systèmes différentiels et microdifférentiels , 1981 .

[19]  Kyoji Saito,et al.  Period Mapping Associated to a Primitive Form , 1983 .

[20]  Tadao Oda K. Saito’s Period Map for Holomorphic Functions with Isolated Critical Points , 1987 .

[21]  B. Malgrange Intégrales asymptotiques et monodromie , 1974 .