The Sloan Digital Sky Survey Reverberation Mapping Project: Hα and Hβ Reverberation Measurements from First-year Spectroscopy and Photometry

We present reverberation mapping results from the first year of combined spectroscopic and photometric observations of the Sloan Digital Sky Survey Reverberation Mapping Project. We successfully recover reverberation time delays between the g+i band emission and the broad Hβemission line for a total of 44 quasars, and for the broad Hα emission line in 18 quasars. Time delays are computed using the JAVELIN and CREAM software and the traditional interpolated cross-correlation function (ICCF): using well-defined criteria, we report measurements of 32 Hβ and 13 Hα lags with JAVELIN, 42 Hβ and 17 Hα lags with CREAM, and 16 Hβ and eight Hα lags with the ICCF. Lag values are generally consistent among the three methods, though we typically measure smaller uncertainties with JAVELIN and CREAM than with the ICCF, given the more physically motivated light curve interpolation and more robust statistical modeling of the former two methods. The median redshift of our Hβ-detected sample of quasars is 0.53, significantly higher than that of the previous reverberation mapping sample. We find that in most objects, the time delay of the Hαemission is consistent with or slightly longer than that of Hβ. We measure black hole masses using our measured time delays and line widths for these quasars. These black hole mass measurements are mostly consistent with expectations based on the local M_(BH) - σ* relationship, and are also consistent with single-epoch black hole mass measurements. This work increases the current sample size of reverberation-mapped active galaxies by about two-thirds and represents the first large sample of reverberation mapping observations beyond the local universe (z < 0.3).

[1]  Walter A. Siegmund,et al.  The 2.5 m Telescope of the Sloan Digital Sky Survey , 2006, astro-ph/0602326.

[2]  D. N. Okhmat,et al.  SPACE TELESCOPE AND OPTICAL REVERBERATION MAPPING PROJECT. IV. ANOMALOUS BEHAVIOR OF THE BROAD ULTRAVIOLET EMISSION LINES IN NGC 5548 , 2016, 1603.08741.

[3]  L. Ho,et al.  THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: POST-STARBURST SIGNATURES IN QUASAR HOST GALAXIES AT z < 1 , 2015, 1506.07535.

[4]  H. Netzer Physical Conditions in Active Nuclei — I The Balmer Decrement , 1975 .

[5]  C. Kochanek,et al.  THE STRUCTURE OF THE X-RAY AND OPTICAL EMITTING REGIONS OF THE LENSED QUASAR Q 2237+0305 , 2013, 1301.5009.

[6]  L. Ho,et al.  THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: AN INVESTIGATION OF BIASES IN C iv EMISSION LINE PROPERTIES , 2016, 1601.05425.

[7]  James H. Burge,et al.  90prime: a prime focus imager for the Steward Observatory 90-in. telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[8]  Bradley M. Peterson,et al.  THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: FIRST BROAD-LINE Hβ AND Mg ii LAGS AT z ≳ 0.3 FROM SIX-MONTH SPECTROSCOPY , 2015, 1510.02802.

[9]  B. M. Peterson,et al.  Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database , 2004, astro-ph/0407299.

[10]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[11]  L. Ho,et al.  THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: NO EVIDENCE FOR EVOLUTION IN THE M • − &sgr; * ?> RELATION TO z ∼ 1 ?> , 2015, 1502.01034.

[12]  Keith Horne,et al.  Accretion disc time lag distributions: applying CREAM to simulated AGN light curves , 2015, 1511.06162.

[13]  Chen Hu,et al.  SUPERMASSIVE BLACK HOLES WITH HIGH ACCRETION RATES IN ACTIVE GALACTIC NUCLEI. IV. Hβ TIME LAGS AND IMPLICATIONS FOR SUPER-EDDINGTON ACCRETION , 2015, 1504.01844.

[14]  D. N. Okhmat,et al.  Reverberation Mapping of Optical Emission Lines in Five Active Galaxies , 2016, 1610.00008.

[15]  D. N. Okhmat,et al.  SPACE TELESCOPE AND OPTICAL REVERBERATION MAPPING PROJECT.VI. REVERBERATING DISK MODELS FOR NGC 5548 , 2016, 1611.06051.

[16]  Brandon C. Kelly,et al.  Are the Variations in Quasar Optical Flux Driven by Thermal Fluctuations , 2009 .

[17]  R. Lupton,et al.  A Method for Optimal Image Subtraction , 1997, astro-ph/9712287.

[18]  Ž. Ivezić,et al.  A DESCRIPTION OF QUASAR VARIABILITY MEASURED USING REPEATED SDSS AND POSS IMAGING , 2011, 1112.0679.

[19]  Paul S. Smith,et al.  Reverberation Measurements for 17 Quasars and the Size-Mass-Luminosity Relations in Active Galactic Nuclei , 1999 .

[20]  Determining Central Black Hole Masses in Distant Active Galaxies and Quasars. II. Improved Optical and UV Scaling Relationships , 2006, astro-ph/0601303.

[21]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[22]  D. N. Okhmat,et al.  REVERBERATION MAPPING RESULTS FOR FIVE SEYFERT 1 GALAXIES , 2012, 1206.6523.

[23]  W. M. Wood-Vasey,et al.  THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.

[24]  Y. Yoon,et al.  THE BLACK HOLE MASS–STELLAR VELOCITY DISPERSION RELATION OF NARROW-LINE SEYFERT 1 GALAXIES , 2014, 1412.7225.

[25]  Fang Wang,et al.  SUPERMASSIVE BLACK HOLES WITH HIGH ACCRETION RATES IN ACTIVE GALACTIC NUCLEI. I. FIRST RESULTS FROM A NEW REVERBERATION MAPPING CAMPAIGN , 2013, 1310.4107.

[26]  C. Kochanek,et al.  IS QUASAR OPTICAL VARIABILITY A DAMPED RANDOM WALK? , 2012, 1202.3783.

[27]  C. E. Thornton,et al.  THE LICK AGN MONITORING PROJECT: REVERBERATION MAPPING OF OPTICAL HYDROGEN AND HELIUM RECOMBINATION LINES , 2010, 1004.2922.

[28]  Supermassive Black Holes in Active Galactic Nuclei. II. Calibration of the M-sigma Relationship for AGNs , 2004, astro-ph/0407297.

[29]  T. Dwelly,et al.  Swift monitoring of NGC 5548: X-ray reprocessing and short-term UV/optical variability , 2014, 1407.6361.

[30]  T. O. S. University,et al.  The Mass of the Central Black Hole in the Seyfert Galaxy NGC 4151 , 2006, astro-ph/0605038.

[31]  Walter A. Siegmund,et al.  THE MULTI-OBJECT, FIBER-FED SPECTROGRAPHS FOR THE SLOAN DIGITAL SKY SURVEY AND THE BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1208.2233.

[32]  E. Bullock,et al.  MODELING THE TIME VARIABILITY OF SDSS STRIPE 82 QUASARS AS A DAMPED RANDOM WALK , 2010, 1004.0276.

[33]  K. Korista,et al.  What the Optical Recombination Lines Can Tell Us about the Broad-Line Regions of Active Galactic Nuclei , 2004, astro-ph/0402506.

[34]  T. Alexander,et al.  Is AGN Variability Correlated with Other AGN Properties?—ZDCF Analysis of Small Samples of Sparse Light Curves , 1997 .

[35]  Aniruddha R. Thakar,et al.  Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe , 2017, 1703.00052.

[36]  M. C. Bentz,et al.  SPACE TELESCOPE AND OPTICAL REVERBERATION MAPPING PROJECT. III. OPTICAL CONTINUUM EMISSION AND BROADBAND TIME DELAYS IN NGC 5548 , 2015, 1510.05648.

[37]  W. M. Wood-Vasey,et al.  THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: TECHNICAL OVERVIEW , 2014, 1408.5970.

[38]  C. Alard Image subtraction using a space-varying kernel , 2000 .

[39]  D. Maoz,et al.  The Relationship between Luminosity and Broad-Line Region Size in Active Galactic Nuclei , 2005, astro-ph/0504484.

[40]  M. Colpi,et al.  Narrow-Line Seyfert 1 Galaxies and their place in the Universe - NLS1 , 2011 .

[41]  Martin J. Rees,et al.  Small Dense Broad-Line Regions in Active Nuclei , 1989 .

[42]  Bradley M. Peterson,et al.  COMMENTS ON CROSS-CORRELATION METHODOLOGY IN VARIABILITY STUDIES OF ACTIVE GALACTIC NUCLEI , 1994 .

[43]  B. Peterson,et al.  The Accuracy of Cross-Correlation Estimates of Quasar Emission-Line Region Sizes , 1987 .

[44]  C. S. Kochanek,et al.  AN ALTERNATIVE APPROACH TO MEASURING REVERBERATION LAGS IN ACTIVE GALACTIC NUCLEI , 2010, 1008.0641.

[45]  Andreas Kelz,et al.  Development of the wide-field IFU PPak , 2004, SPIE Astronomical Telescopes + Instrumentation.

[46]  L. Ho,et al.  The Sloan Digital Sky Survey Reverberation Mapping Project: Composite Lags at z ≤ 1 , 2017, 1712.02366.

[47]  Christopher F. McKee,et al.  Reverberation mapping of the emission line regions of Seyfert galaxies and quasars. , 1982 .

[48]  Usa,et al.  QUANTIFYING QUASAR VARIABILITY AS PART OF A GENERAL APPROACH TO CLASSIFYING CONTINUOUSLY VARYING SOURCES , 2009, 0909.1326.

[49]  M. C. Bentz,et al.  REVERBERATION MAPPING MEASUREMENTS OF BLACK HOLE MASSES IN SIX LOCAL SEYFERT GALAXIES , 2010, 1006.4160.

[50]  Christopher W. Morgan,et al.  THE QUASAR ACCRETION DISK SIZE–BLACK HOLE MASS RELATION , 2007, 0707.0305.

[51]  Stephan Aune,et al.  The CFHT MegaCam 40 CCDs camera: cryogenic design and CCD integration , 2003, SPIE Astronomical Telescopes + Instrumentation.

[52]  Takeo Minezaki,et al.  THE LICK AGN MONITORING PROJECT: BROAD-LINE REGION RADII AND BLACK HOLE MASSES FROM REVERBERATION MAPPING OF Hβ , 2009, The Astrophysical Journal.

[53]  P. Hall,et al.  THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: RAPID C iv BROAD ABSORPTION LINE VARIABILITY , 2015, 1503.03076.

[54]  Chen Hu,et al.  SUPERMASSIVE BLACK HOLES WITH HIGH ACCRETION RATES IN ACTIVE GALACTIC NUCLEI. V. A NEW SIZE–LUMINOSITY SCALING RELATION FOR THE BROAD-LINE REGION , 2016, 1604.06218.

[55]  Astrophysics,et al.  SUPERMASSIVE BLACK HOLES WITH HIGH ACCRETION RATES IN ACTIVE GALACTIC NUCLEI. III. DETECTION OF Fe ii REVERBERATION IN NINE NARROW-LINE SEYFERT 1 GALAXIES , 2015, 1503.03611.

[56]  Bradley M. Peterson,et al.  Supermassive Black Holes in Active Galactic Nuclei. II. Calibration of the Black Hole Mass-Velocity Dispersion Relationship for Active Galactic Nuclei , 2004 .

[57]  S. G. Sergeev,et al.  Lag-Luminosity Relationship for Interband Lags between Variations in B, V, R, and I Bands in Active Galactic Nuclei , 2005 .

[58]  D. A. García-Hernández,et al.  THE TENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT , 2013, 1307.7735.

[59]  L. Ho,et al.  THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: ENSEMBLE SPECTROSCOPIC VARIABILITY OF QUASAR BROAD EMISSION LINES , 2015, 1506.07886.

[60]  D. N. Okhmat,et al.  Space Telescope and Optical Reverberation Mapping Project. V. Optical Spectroscopic Campaign and Emission-line Analysis for NGC 5548 , 2017, 1702.01177.

[61]  H. Rix,et al.  Detection of Time Lags between Quasar Continuum Emission Bands Based On Pan-STARRS Light Curves , 2016, 1612.08747.

[62]  S. B. Cenko,et al.  THE LICK AGN MONITORING PROJECT 2011: SPECTROSCOPIC CAMPAIGN AND EMISSION-LINE LIGHT CURVES , 2015, 1503.01146.

[63]  Shai Kaspi,et al.  Reverberation Mapping of High-Luminosity Quasars: First Results , 2006, astro-ph/0612722.

[64]  Bradley M. Peterson,et al.  THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: VELOCITY SHIFTS OF QUASAR EMISSION LINES , 2016, 1602.03894.

[65]  I. Georgantopoulos,et al.  X-ray variability in a deep, flux-limited sample of QSOs , 1999 .

[66]  L. Ho,et al.  SUPERMASSIVE BLACK HOLES WITH HIGH ACCRETION RATES IN ACTIVE GALACTIC NUCLEI. VI. VELOCITY-RESOLVED REVERBERATION MAPPING OF THE Hβ LINE , 2016, 1602.01922.

[67]  S. Kozłowski,et al.  A degeneracy in DRW modelling of AGN light curves , 2016, 1604.01773.

[68]  Ewan Cameron,et al.  On the Estimation of Confidence Intervals for Binomial Population Proportions in Astronomy: The Simplicity and Superiority of the Bayesian Approach , 2010, Publications of the Astronomical Society of Australia.

[69]  J. Prieto,et al.  THE MAN BEHIND THE CURTAIN: X-RAYS DRIVE THE UV THROUGH NIR VARIABILITY IN THE 2013 ACTIVE GALACTIC NUCLEUS OUTBURST IN NGC 2617 , 2013, 1310.2241.

[70]  R Edelson,et al.  The Discrete Correlation Function: a New Method for Analyzing Unevenly Sampled Variability Data , 1988 .

[71]  S. Kozłowski,et al.  Limitations on the recovery of the true AGN variability parameters using Damped Random Walk modeling , 2016, 1611.08248.

[72]  Mamoru Doi,et al.  PHOTOMETRIC RESPONSE FUNCTIONS OF THE SLOAN DIGITAL SKY SURVEY IMAGER , 2010, 1002.3701.

[73]  G. Richards,et al.  A CATALOG OF QUASAR PROPERTIES FROM SLOAN DIGITAL SKY SURVEY DATA RELEASE 7 , 2011, 2209.03987.

[74]  Chung-Pei Ma,et al.  REVISITING THE SCALING RELATIONS OF BLACK HOLE MASSES AND HOST GALAXY PROPERTIES , 2012, 1211.2816.

[75]  K. Stanek,et al.  HATNET Variability Survey in the High Stellar Density “Kepler Field” with Millimagnitude Image Subtraction Photometry , 2004 .

[76]  M. Bentz,et al.  The AGN Black Hole Mass Database , 2014, 1411.2596.

[77]  Bradley M. Peterson,et al.  THE LOW-LUMINOSITY END OF THE RADIUS–LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI , 2013, 1303.1742.

[78]  M. C. Bentz,et al.  SPACE TELESCOPE AND OPTICAL REVERBERATION MAPPING PROJECT. II. SWIFT AND HST REVERBERATION MAPPING OF THE ACCRETION DISK OF NGC 5548 , 2015, 1501.05951.

[79]  Bradley M. Peterson,et al.  Steps toward Determination of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei. XIV. Intensive Optical Spectrophotometric Observations of NGC 7469 , 1998 .