Scaling up Bayesian variational inference using distributed computing clusters
暂无分享,去创建一个
Andrés R. Masegosa | Anders L. Madsen | Antonio Salmerón | Ana M. Martínez | Darío Ramos-López | Thomas D. Nielsen | Helge Langseth | A. Madsen | A. Salmerón | H. Langseth | D. Ramos-López | A. Masegosa
[1] A. Asuncion,et al. UCI Machine Learning Repository, University of California, Irvine, School of Information and Computer Sciences , 2007 .
[2] 이주연,et al. Latent Dirichlet Allocation (LDA) 모델 기반의 인공지능(A.I.) 기술 관련 연구 활동 및 동향 분석 , 2018 .
[3] Ameet Talwalkar,et al. MLlib: Machine Learning in Apache Spark , 2015, J. Mach. Learn. Res..
[4] Thomas Hofmann,et al. Map-Reduce for Machine Learning on Multicore , 2007 .
[5] Andrés R. Masegosa,et al. d-VMP: Distributed Variational Message Passing , 2016, Probabilistic Graphical Models.
[6] Seif Haridi,et al. Apache Flink™: Stream and Batch Processing in a Single Engine , 2015, IEEE Data Eng. Bull..
[7] Z.-Q. Luo,et al. Error bounds and convergence analysis of feasible descent methods: a general approach , 1993, Ann. Oper. Res..
[8] Xing Xie,et al. Mining interesting locations and travel sequences from GPS trajectories , 2009, WWW '09.
[9] Charles M. Bishop,et al. Variational Message Passing , 2005, J. Mach. Learn. Res..
[10] N. B. Anuar,et al. The rise of "big data" on cloud computing: Review and open research issues , 2015, Inf. Syst..
[11] H. Robbins. A Stochastic Approximation Method , 1951 .
[12] Andrés R. Masegosa,et al. Modeling Concept Drift: A Probabilistic Graphical Model Based Approach , 2015, IDA.
[13] Harold J. Kushner,et al. Stochastic Approximation Algorithms and Applications , 1997, Applications of Mathematics.
[14] Mark W. Schmidt,et al. Convergence of Proximal-Gradient Stochastic Variational Inference under Non-Decreasing Step-Size Sequence , 2015, ArXiv.
[15] Scott Shenker,et al. Spark: Cluster Computing with Working Sets , 2010, HotCloud.
[16] Xing Xie,et al. GeoLife: A Collaborative Social Networking Service among User, Location and Trajectory , 2010, IEEE Data Eng. Bull..
[17] Masa-aki Sato,et al. Online Model Selection Based on the Variational Bayes , 2001, Neural Computation.
[18] Sanjay Ghemawat,et al. MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.
[19] Matthew J. Beal. Variational algorithms for approximate Bayesian inference , 2003 .
[20] Felix Naumann,et al. The Stratosphere platform for big data analytics , 2014, The VLDB Journal.
[21] Nando de Freitas,et al. An Introduction to Sequential Monte Carlo Methods , 2001, Sequential Monte Carlo Methods in Practice.
[22] G. Casella,et al. Statistical Inference , 2003, Encyclopedia of Social Network Analysis and Mining.
[23] James R. Foulds,et al. Stochastic collapsed variational Bayesian inference for latent Dirichlet allocation , 2013, KDD.
[24] Jonathan P. How,et al. Approximate Decentralized Bayesian Inference , 2014, UAI.
[25] Andrés R. Masegosa,et al. Financial Data Analysis with PGMs Using AMIDST , 2016, 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW).
[26] Andrés R. Masegosa,et al. Dynamic Bayesian modeling for risk prediction in credit operations , 2015, SCAI.
[27] David M. Blei,et al. Smoothed Gradients for Stochastic Variational Inference , 2014, NIPS.
[28] Anders L. Madsen,et al. AMIDST: a Java Toolbox for Scalable Probabilistic Machine Learning , 2017, Knowl. Based Syst..
[29] Yoram Singer,et al. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization , 2011, J. Mach. Learn. Res..
[30] Yee Whye Teh,et al. Bayesian Learning via Stochastic Gradient Langevin Dynamics , 2011, ICML.
[31] Andre Wibisono,et al. Streaming Variational Bayes , 2013, NIPS.
[32] Andrés R. Masegosa,et al. Probabilistic Graphical Models on Multi-Core CPUs Using Java 8 , 2016, IEEE Computational Intelligence Magazine.
[33] Chong Wang,et al. Stochastic variational inference , 2012, J. Mach. Learn. Res..
[34] Cheng Soon Ong,et al. Multivariate spearman's ρ for aggregating ranks using copulas , 2016 .
[35] Wei-Ying Ma,et al. Understanding mobility based on GPS data , 2008, UbiComp.
[36] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[37] W. Michael Conklin,et al. Monte Carlo Methods in Bayesian Computation , 2001, Technometrics.