Formulating invariant heat-type curve flows
暂无分享,去创建一个
[1] J. Dieudonne,et al. Invariant theory, old and new , 1971 .
[2] David A. Forsyth,et al. Invariant Descriptors for 3D Object Recognition and Pose , 1991, IEEE Trans. Pattern Anal. Mach. Intell..
[3] S. Zucker,et al. Toward a computational theory of shape: an overview , 1990, eccv 1990.
[4] M. Grayson. The heat equation shrinks embedded plane curves to round points , 1987 .
[5] K. Reidemeister. Vorlesungen über Differentialgeometrie II , 1926 .
[6] H. Blum. Biological shape and visual science (part I) , 1973 .
[7] P. Lions,et al. Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .
[8] Yun-Gang Chen,et al. Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations , 1989 .
[9] P. Lions,et al. Axioms and fundamental equations of image processing , 1993 .
[10] Baba C. Vemuri,et al. Geometric Methods in Computer Vision , 1991 .
[11] Andrew P. Witkin,et al. Scale-Space Filtering , 1983, IJCAI.
[12] H. Pollaczek-Geiringer,et al. W. Blaschke, Vorlesungen über Differentialgeometrie I. 2. Auflage (Grundlehren der math. Wiss. in Einzeldarstellungen, Bd. I). Verlag J. Springer, Berlin 1924 , 1925 .
[13] M. Gage,et al. The Curve Shortening Flow , 1987 .
[14] Guillermo Sapiro,et al. Implementing continuous-scale morphology via curve evolution , 1993, Pattern Recognit..
[15] M. Gage,et al. The heat equation shrinking convex plane curves , 1986 .
[16] S. Osher,et al. Algorithms Based on Hamilton-Jacobi Formulations , 1988 .
[17] W. Blaschke. Vorlesungen über Differentialgeometrie , 1912 .
[18] J. Sethian,et al. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .
[19] Josef Grünvald,et al. Projective differential geometry of curves and ruled surfaces , 1908 .
[20] Alan L. Yuille,et al. Scaling Theorems for Zero Crossings , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[21] P. Lions,et al. User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.
[22] G. Sapiro,et al. On affine plane curve evolution , 1994 .
[23] S. Angenent. Parabolic equations for curves on surfaces Part II. Intersections, blow-up and generalized solutions , 1991 .
[24] J. Smoller. Shock Waves and Reaction-Diffusion Equations , 1983 .
[25] L. Evans,et al. Motion of level sets by mean curvature. II , 1992 .
[26] H. Blum. Biological shape and visual science. I. , 1973, Journal of theoretical biology.