Formulating invariant heat-type curve flows

We describe a geometric method for formulating planar curve evolution equations which are invariant under a certain transformation group. The approach is based on concepts from the classical theory of differential invariants. The flows we obtain are geometric analogues of the classical heat equation, and can be used to define invariant scale-spaces. We give a `high- level' general procedure for the construction of these flows. Examples are presented for viewing transformations.

[1]  J. Dieudonne,et al.  Invariant theory, old and new , 1971 .

[2]  David A. Forsyth,et al.  Invariant Descriptors for 3D Object Recognition and Pose , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  S. Zucker,et al.  Toward a computational theory of shape: an overview , 1990, eccv 1990.

[4]  M. Grayson The heat equation shrinks embedded plane curves to round points , 1987 .

[5]  K. Reidemeister Vorlesungen über Differentialgeometrie II , 1926 .

[6]  H. Blum Biological shape and visual science (part I) , 1973 .

[7]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[8]  Yun-Gang Chen,et al.  Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations , 1989 .

[9]  P. Lions,et al.  Axioms and fundamental equations of image processing , 1993 .

[10]  Baba C. Vemuri,et al.  Geometric Methods in Computer Vision , 1991 .

[11]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[12]  H. Pollaczek-Geiringer,et al.  W. Blaschke, Vorlesungen über Differentialgeometrie I. 2. Auflage (Grundlehren der math. Wiss. in Einzeldarstellungen, Bd. I). Verlag J. Springer, Berlin 1924 , 1925 .

[13]  M. Gage,et al.  The Curve Shortening Flow , 1987 .

[14]  Guillermo Sapiro,et al.  Implementing continuous-scale morphology via curve evolution , 1993, Pattern Recognit..

[15]  M. Gage,et al.  The heat equation shrinking convex plane curves , 1986 .

[16]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[17]  W. Blaschke Vorlesungen über Differentialgeometrie , 1912 .

[18]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[19]  Josef Grünvald,et al.  Projective differential geometry of curves and ruled surfaces , 1908 .

[20]  Alan L. Yuille,et al.  Scaling Theorems for Zero Crossings , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[22]  G. Sapiro,et al.  On affine plane curve evolution , 1994 .

[23]  S. Angenent Parabolic equations for curves on surfaces Part II. Intersections, blow-up and generalized solutions , 1991 .

[24]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[25]  L. Evans,et al.  Motion of level sets by mean curvature. II , 1992 .

[26]  H. Blum Biological shape and visual science. I. , 1973, Journal of theoretical biology.