Meaningful Scales Detection along Digital Contours for Unsupervised Local Noise Estimation

The automatic detection of noisy or damaged parts along digital contours is a difficult problem since it is hard to distinguish between information and perturbation without further a priori hypotheses. However, solving this issue has a great impact on numerous applications, including image segmentation, geometric estimators, contour reconstruction, shape matching, or image edition. We propose an original strategy to detect what the relevant scales are at which each point of the digital contours should be considered. It relies on theoretical results of asymptotic discrete geometry. A direct consequence is the automatic detection of the noisy or damaged parts of the contour, together with its quantitative evaluation (or noise level). Apart from a given maximal observation scale, the proposed approach does not require any parameter tuning and is easy to implement. We demonstrate its effectiveness on several datasets. We present different direct applications of this local measure to contour smoothing and geometric estimators whose algorithms initially required a noise/scale parameter to tune: They show the pertinence of the proposed measure for digital shape analysis and reconstruction.

[1]  A. Ardeshir Goshtasby,et al.  An adaptive window mechanism for image smoothing , 2008, Comput. Vis. Image Underst..

[2]  Wenyu Liu,et al.  A Unified Curvature Definition for Regular, Polygonal, and Digital Planar Curves , 2008, International Journal of Computer Vision.

[3]  François de Vieilleville,et al.  Maximal digital straight segments and convergence of discrete geometric estimators , 2005, SCIA.

[4]  Steven W. Zucker,et al.  Local Scale Control for Edge Detection and Blur Estimation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Isabelle Debled-Rennesson,et al.  A Linear Algorithm for Segmentation of Digital Curves , 1995, Int. J. Pattern Recognit. Artif. Intell..

[6]  Jacques-Olivier Lachaud,et al.  Espaces non-euclidiens et analyse d'image : modèles déformables riemanniens et discrets, topologie et géométrie discrète. (Non-Euclidean spaces and image analysis : Riemannian and discrete deformable models, discrete topology and geometry) , 2006 .

[7]  Salvatore Tabbone,et al.  Author manuscript, published in "IEEE International Conference on Image Processing- ICIP'2011 (2011)" EDGE NOISE REMOVAL IN BILEVEL GRAPHICAL DOCUMENT IMAGES USING SPARSE REPRESENTATION , 2011 .

[8]  Camille Couprie,et al.  Power Watershed: A Unifying Graph-Based Optimization Framework , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[10]  François de Vieilleville,et al.  Fast, accurate and convergent tangent estimation on digital contours , 2007, Image Vis. Comput..

[11]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[12]  Ke Chen,et al.  Adaptive smoothing via contextual and local discontinuities , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Jerry D. Gibson,et al.  Handbook of Image and Video Processing , 2000 .

[14]  Arnold W. M. Smeulders,et al.  Discrete Representation of Straight Lines , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Isabelle Debled-Rennesson,et al.  Optimal blurred segments decomposition of noisy shapes in linear time , 2006, Comput. Graph..

[16]  François de Vieilleville,et al.  Convex Digital Polygons, Maximal Digital Straight Segments and Convergence of Discrete Geometric Estimators , 2007, Journal of Mathematical Imaging and Vision.

[17]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[18]  Danny Barash,et al.  A Fundamental Relationship between Bilateral Filtering, Adaptive Smoothing, and the Nonlinear Diffusion Equation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Partha Bhowmick,et al.  Fast Polygonal Approximation of Digital Curves Using Relaxed Straightness Properties , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Jacques-Olivier Lachaud,et al.  Curvature estimation along noisy digital contours by approximate global optimization , 2009, Pattern Recognit..

[21]  Charles Kervrann An Adaptive Window Approach for Image Smoothing and Structures Preserving , 2004, ECCV.

[22]  Tapas Kanungo,et al.  Document degradation models and a methodology for degradation model validation , 1996 .

[23]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[24]  Azriel Rosenfeld,et al.  Digital geometry - geometric methods for digital picture analysis , 2004 .

[25]  Jacques-Olivier Lachaud,et al.  Multi-scale Analysis of Discrete Contours for Unsupervised Noise Detection , 2009, IWCIA.

[26]  AZRIEL ROSENFELD,et al.  Digital Straight Line Segments , 1974, IEEE Transactions on Computers.

[27]  Thanh Phuong Nguyen,et al.  Curvature Estimation in Noisy Curves , 2007, CAIP.

[28]  Hong Jeong,et al.  Adaptive Determination of Filter Scales for Edge Detection , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Azriel Rosenfeld,et al.  Digital straightness - a review , 2004, Discret. Appl. Math..

[31]  Florent Brunet,et al.  Binomial Convolutions and Derivatives Estimation from Noisy Discretizations , 2008, DGCI.