What is the fractional Laplacian? A comparative review with new results

Abstract The fractional Laplacian in R d , which we write as ( − Δ ) α / 2 with α ∈ ( 0 , 2 ) , has multiple equivalent characterizations. Moreover, in bounded domains, boundary conditions must be incorporated in these characterizations in mathematically distinct ways, and there is currently no consensus in the literature as to which definition of the fractional Laplacian in bounded domains is most appropriate for a given application. The Riesz (or integral) definition, for example, admits a nonlocal boundary condition, where the value of a function must be prescribed on the entire exterior of the domain in order to compute its fractional Laplacian. In contrast, the spectral definition requires only the standard local boundary condition. These differences, among others, lead us to ask the question: “What is the fractional Laplacian?” Beginning from first principles, we compare several commonly used definitions of the fractional Laplacian theoretically, through their stochastic interpretations as well as their analytical properties. Then, we present quantitative comparisons using a sample of state-of-the-art methods. We discuss recent advances on nonzero boundary conditions and present new methods to discretize such boundary value problems: radial basis function collocation (for the Riesz fractional Laplacian) and nonharmonic lifting (for the spectral fractional Laplacian). In our numerical studies, we aim to compare different definitions on bounded domains using a collection of benchmark problems. We consider the fractional Poisson equation with both zero and nonzero boundary conditions, where the fractional Laplacian is defined according to the Riesz definition, the spectral definition, the directional definition, and the horizon-based nonlocal definition. We verify the accuracy of the numerical methods used in the approximations for each operator, and we focus on identifying differences in the boundary behaviors of solutions to equations posed with these different definitions. Through our efforts, we aim to further engage the research community in open problems and assist practitioners in identifying the most appropriate definition and computational approach to use for their mathematical models in addressing anomalous transport in diverse applications.

[1]  Xavier Ros-Oton,et al.  Nonlocal problems with Neumann boundary conditions , 2014, 1407.3313.

[2]  Erratum: Asymptotic Expansion of Solutions to the Dissipative Equation with Fractional Laplacian , 2016, SIAM J. Math. Anal..

[3]  L. Hörmander,et al.  The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis , 1983 .

[4]  P. Lions,et al.  Stochastic differential equations with reflecting boundary conditions , 1984 .

[5]  R. Getoor,et al.  First passage times for symmetric stable processes in space , 1961 .

[6]  Harbir Antil,et al.  Fractional Operators with Inhomogeneous Boundary Conditions: Analysis, Control, and Discretization , 2017, 1703.05256.

[7]  Nicolas Privault,et al.  Potential Theory in Classical Probability , 2008 .

[8]  N. Laskin Fractional quantum mechanics and Lévy path integrals , 1999, hep-ph/9910419.

[9]  M. Meerschaert,et al.  Stochastic Models for Fractional Calculus , 2011 .

[10]  Changpin Li,et al.  Numerical methods for fractional partial differential equations , 2018, Int. J. Comput. Math..

[11]  Sandra Martínez,et al.  Finite Element Approximation for the Fractional Eigenvalue Problem , 2016, J. Sci. Comput..

[12]  M. Kwasnicki,et al.  Ten equivalent definitions of the fractional laplace operator , 2015, 1507.07356.

[13]  Mark M. Meerschaert,et al.  Boundary conditions for two-sided fractional diffusion , 2019, J. Comput. Phys..

[14]  R. Herrmann Fractional Calculus: An Introduction for Physicists , 2011 .

[15]  R. Song,et al.  On the Boundary Theory of Subordinate Killed Lévy Processes , 2017, Potential Analysis.

[16]  Gerd Grubb,et al.  Fractional Laplacians on domains, a development of Hörmander's theory of μ-transmission pseudodifferential operators , 2013, 1310.0951.

[17]  Andrei N. Borodin,et al.  Reflecting Brownian Motion , 1996 .

[18]  Pedro J. Miana,et al.  Extension problem and fractional operators: semigroups and wave equations , 2012, 1207.7203.

[19]  Gabriel Acosta,et al.  A short FE implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian , 2016, Comput. Math. Appl..

[20]  Ricardo H. Nochetto,et al.  A PDE Approach to Fractional Diffusion in General Domains: A Priori Error Analysis , 2013, Found. Comput. Math..

[21]  L. Caffarelli,et al.  An Extension Problem Related to the Fractional Laplacian , 2006, math/0608640.

[22]  George E. Karniadakis,et al.  Computing Fractional Laplacians on Complex-Geometry Domains: Algorithms and Simulations , 2017, SIAM J. Sci. Comput..

[23]  Mark M. Meerschaert,et al.  Space-time fractional diffusion on bounded domains , 2012 .

[24]  Masakazu Yamamoto Asymptotic Expansion of Solutions to the Dissipative Equation with Fractional Laplacian , 2012, SIAM J. Math. Anal..

[25]  Zhiping Mao,et al.  A Spectral Method (of Exponential Convergence) for Singular Solutions of the Diffusion Equation with General Two-Sided Fractional Derivative , 2018, SIAM J. Numer. Anal..

[26]  Renming Song,et al.  Potential theory of subordinate killed Brownian motion in a domain , 2003 .

[27]  Guofei Pang,et al.  Gauss-Jacobi-type quadrature rules for fractional directional integrals , 2013, Comput. Math. Appl..

[28]  P. Hsu Reflecting Brownian motion, boundary local time and the Neumann problem , 1984 .

[29]  M. Freidlin Functional Integration And Partial Differential Equations , 1985 .

[30]  H. Kober ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .

[31]  Pablo Raúl Stinga,et al.  Fractional powers of second order partial differential operators: extension problem and regularity theory , 2010 .

[32]  L. Roncal,et al.  Fractional Laplacian on the torus , 2012, 1209.6104.

[33]  M. Kac On distributions of certain Wiener functionals , 1949 .

[34]  Mark Ainsworth,et al.  Towards an Efficient Finite Element Method for the Integral Fractional Laplacian on Polygonal Domains , 2018 .

[35]  J. V'azquez Recent progress in the theory of Nonlinear Diffusion with Fractional Laplacian Operators , 2014, 1401.3640.

[36]  Tony Shardlow,et al.  Unbiased `walk-on-spheres' Monte Carlo methods for the fractional Laplacian , 2016, 1609.03127.

[37]  Tommaso Boggio,et al.  Sulle funzioni di green d’ordinem , 1905 .

[38]  Norbert Heuer,et al.  Finite element approximations of the nonhomogeneous fractional Dirichlet problem , 2017, 1709.06592.

[39]  R. Lehoucq,et al.  Fractional Diffusion on Bounded Domains , 2015 .

[40]  É. Pardoux,et al.  A Probabilistic Formula for a Poisson Equation with Neumann Boundary Condition , 2009 .

[41]  Xavier Ros-Oton,et al.  The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary , 2012, 1207.5985.

[42]  Wei Cai,et al.  What Is the Fractional Laplacian , 2018, 1801.09767.

[43]  F. Quirós,et al.  A P ] 1 4 Ja n 20 10 A fractional porous medium equation by , 2010 .

[44]  Guofei Pang,et al.  Space-fractional advection-dispersion equations by the Kansa method , 2015, J. Comput. Phys..

[45]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[46]  P. R. Stinga,et al.  Fractional elliptic equations, Caccioppoli estimates and regularity , 2014, 1409.7721.

[47]  J. L. Varona,et al.  Nonlocal discrete diffusion equations and the fractional discrete Laplacian, regularity and applications , 2016, 1608.08913.

[48]  K. Burdzy,et al.  Censored stable processes , 2003 .

[49]  D. Benson,et al.  Multidimensional advection and fractional dispersion. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[50]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[51]  P. R. Stinga,et al.  Fractional semilinear Neumann problems arising from a fractional Keller–Segel model , 2014, 1406.7406.

[52]  B. Cox,et al.  Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian. , 2010, The Journal of the Acoustical Society of America.

[53]  Guy Barles,et al.  On Neumann Type Problems for nonlocal Equations set in a half Space , 2011, 1112.0476.

[54]  S. Holm,et al.  Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. , 2004, The Journal of the Acoustical Society of America.

[55]  I. Turner,et al.  Numerical methods for fractional partial differential equations with Riesz space fractional derivatives , 2010 .

[56]  Koponen,et al.  Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[57]  R. Schilling Financial Modelling with Jump Processes , 2005 .

[58]  V. Kolokoltsov Markov Processes, Semigroups and Generators , 2011 .

[59]  Gerd Grubb,et al.  Regularity of spectral fractional Dirichlet and Neumann problems , 2014, 1412.3744.

[60]  Mark M. Meerschaert,et al.  Tempered fractional calculus , 2015, J. Comput. Phys..

[61]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[62]  Bartłlomiej Dyda,et al.  Fractional calculus for power functions and eigenvalues of the fractional Laplacian , 2012 .

[63]  Roberta Musina,et al.  On fractional Laplacians -- 2 , 2014, 1408.3568.

[64]  Joseph E. Pasciak,et al.  On sinc quadrature approximations of fractional powers of regularly accretive operators , 2017, J. Num. Math..

[65]  E. Valdinoci,et al.  Nonlocal Diffusion and Applications , 2015, 1504.08292.

[66]  Juan Luis V'azquez,et al.  The Mathematical Theories of Diffusion: Nonlinear and Fractional Diffusion , 2017, 1706.08241.

[67]  Mark Ainsworth,et al.  Hybrid Finite Element-Spectral Method for the Fractional Laplacian: Approximation Theory and Efficient Solver , 2018, SIAM J. Sci. Comput..

[68]  Luca Gerardo-Giorda,et al.  Discretizations of the Spectral Fractional Laplacian on General Domains with Dirichlet, Neumann, and Robin Boundary Conditions , 2017, SIAM J. Numer. Anal..

[69]  Gabriel Acosta,et al.  A Fractional Laplace Equation: Regularity of Solutions and Finite Element Approximations , 2015, SIAM J. Numer. Anal..

[70]  R. Dante DeBlassie,et al.  The First Exit Time of a Two-Dimensional Symmetric Stable Process from a Wedge , 1990 .

[71]  Jie Shen,et al.  Efficient and accurate spectral method using generalized Jacobi functions for solving Riesz fractional differential equations , 2016 .

[72]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[73]  Mark M. Meerschaert,et al.  Anomalous diffusion with ballistic scaling: A new fractional derivative , 2018, J. Comput. Appl. Math..

[74]  Max Gunzburger,et al.  Regularity and approximation analyses of nonlocal variational equality and inequality problems , 2018, 1804.10282.

[75]  R. M. Blumenthal,et al.  On the distribution of first hits for the symmetric stable processes. , 1961 .

[76]  Zhonghai Ding,et al.  A proof of the trace theorem of Sobolev spaces on Lipschitz domains , 1996 .

[77]  M. Reed Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .

[78]  Wei Cai,et al.  Numerical Solution of the Robin Problem of Laplace Equations with a Feynman–Kac Formula and Reflecting Brownian Motions , 2016, J. Sci. Comput..

[79]  Adam M. Oberman,et al.  Numerical Methods for the Fractional Laplacian: A Finite Difference-Quadrature Approach , 2013, SIAM J. Numer. Anal..

[80]  S. Molchanov,et al.  Symmetric Stable Processes as Traces of Degenerate Diffusion Processes , 1969 .

[81]  R. Estrada,et al.  Introduction to the Theory of Distributions , 1994 .

[82]  Ricardo H. Nochetto,et al.  Numerical methods for fractional diffusion , 2017, Comput. Vis. Sci..

[83]  Kun Zhou,et al.  Analysis and Approximation of Nonlocal Diffusion Problems with Volume Constraints , 2012, SIAM Rev..

[84]  Renming Song,et al.  Two-sided eigenvalue estimates for subordinate processes in domains , 2005 .

[85]  Mark Ainsworth,et al.  Well-posedness of the Cahn–Hilliard equation with fractional free energy and its Fourier Galerkin approximation , 2017 .

[86]  Svetozar Margenov,et al.  A Comparison of Accuracy and Efficiency of Parallel Solvers for Fractional Power Diffusion Problems , 2017, PPAM.

[87]  Jan S. Hesthaven,et al.  Numerical Approximation of the Fractional Laplacian via hp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$hp$$\end{doc , 2014, Journal of Scientific Computing.

[88]  Mihály Kovács,et al.  Boundary conditions for fractional diffusion , 2017, J. Comput. Appl. Math..

[89]  Harbir Antil,et al.  External optimal control of fractional parabolic PDEs , 2019 .

[90]  P. R. Stinga,et al.  Extension Problem and Harnack's Inequality for Some Fractional Operators , 2009, 0910.2569.

[91]  M. Meerschaert,et al.  Fractional vector calculus for fractional advection–dispersion , 2006 .

[92]  Mark Ainsworth,et al.  Aspects of an adaptive finite element method for the fractional Laplacian: A priori and a posteriori error estimates, efficient implementation and multigrid solver☆☆☆ , 2017, 1708.03912.

[93]  Yanzhi Zhang,et al.  A comparative study on nonlocal diffusion operators related to the fractional Laplacian , 2017, Discrete & Continuous Dynamical Systems - B.

[94]  Petr N. Vabishchevich Numerically solving an equation for fractional powers of elliptic operators , 2015, J. Comput. Phys..

[95]  A. V. Balakrishnan,et al.  Fractional powers of closed operators and the semigroups generated by them. , 1960 .

[96]  Marta D'Elia,et al.  The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator , 2013, Comput. Math. Appl..

[97]  Zhi-Ming Ma,et al.  Reflected Symmetric α-Stable Processes and Regional Fractional Laplacian , 2006 .

[98]  Wen Chen,et al.  Recent Advances in Radial Basis Function Collocation Methods , 2013 .

[99]  Guofei Pang,et al.  A new definition of fractional Laplacian with application to modeling three-dimensional nonlocal heat conduction , 2016, J. Comput. Phys..

[100]  Zhi-Ming Ma,et al.  BOUNDARY PROBLEMS FOR FRACTIONAL LAPLACIANS , 2005 .

[101]  Claudia Bucur,et al.  Some observations on the Green function for the ball in the fractional Laplace framework , 2015, 1502.06468.

[102]  Mahamadi Warma,et al.  The Fractional Relative Capacity and the Fractional Laplacian with Neumann and Robin Boundary Conditions on Open Sets , 2015 .

[103]  Wei Cai,et al.  A Parallel Method for Solving Laplace Equations with Dirichlet Data Using Local Boundary Integral Equations and Random Walks , 2012, SIAM J. Sci. Comput..

[104]  Wei Cai,et al.  Computation of Local Time of Reflecting Brownian Motion and Probabilistic Representation of the Neumann Problem , 2015, 1502.01319.

[105]  Joseph E. Pasciak,et al.  Numerical approximation of fractional powers of elliptic operators , 2013, Math. Comput..

[106]  M. Manhart,et al.  Markov Processes , 2018, Introduction to Stochastic Processes and Simulation.

[107]  M. E. Muller Some Continuous Monte Carlo Methods for the Dirichlet Problem , 1956 .

[108]  Guofei Pang,et al.  Stochastic Solution of Elliptic and Parabolic Boundary Value Problems for the Spectral Fractional Laplacian , 2018, 1812.01206.

[109]  Zhiping Mao,et al.  Analysis and Approximation of a Fractional Cahn-Hilliard Equation , 2017, SIAM J. Numer. Anal..

[110]  Peter Constantin,et al.  Behavior of solutions of 2D quasi-geostrophic equations , 1999 .

[111]  G. A. Brosamler,et al.  A probalistic solution of the Neumann problem. , 1976 .

[112]  Weihua Deng,et al.  A Riesz Basis Galerkin Method for the Tempered Fractional Laplacian , 2018, SIAM J. Numer. Anal..

[113]  Giulio Schimperna,et al.  Fractional Cahn-Hilliard, Allen-Cahn and porous medium equations , 2015, 1502.06383.

[114]  L. Roncal,et al.  Transference of Fractional Laplacian Regularity , 2014 .

[115]  N. S. Landkof Foundations of Modern Potential Theory , 1972 .

[116]  Renming Song,et al.  Potential Analysis of Stable Processes and its Extensions , 2009 .

[117]  M. Meerschaert,et al.  VECTOR GRÜNWALD FORMULA FOR FRACTIONAL DERIVATIVES , 2004 .

[118]  M. Freidlin,et al.  Functional Integration and Partial Differential Equations. (AM-109), Volume 109 , 1985 .

[119]  Ralf Metzler,et al.  Fractional Calculus: An Introduction for Physicists , 2012 .