Application of Small Punch Testing to Evaluate Elastic and Plastic parts of Fracture Energy of Cortical bone

[1]  Laura Vergani,et al.  Understanding the structure–property relationship in cortical bone to design a biomimetic composite , 2016 .

[2]  D. K. Sehgal,et al.  Studies on deformational behavior of miniaturized cortical bone specimens using finite element simulation , 2014 .

[3]  D. K. Sehgal,et al.  Application of Elastic-Plastic Fracture Mechanics to Determine the Locational Variation in Fracture Properties of Cortical Bone , 2014 .

[4]  R. Ritchie,et al.  On the Mechanistic Origins of Toughness in Bone , 2010 .

[5]  R. Ritchie,et al.  Measurement of the toughness of bone: a tutorial with special reference to small animal studies. , 2008, Bone.

[6]  R O Ritchie,et al.  The true toughness of human cortical bone measured with realistically short cracks. , 2008, Nature materials.

[7]  R O Ritchie,et al.  Fracture in human cortical bone: local fracture criteria and toughening mechanisms. , 2005, Journal of biomechanics.

[8]  R O Ritchie,et al.  Effect of aging on the toughness of human cortical bone: evaluation by R-curves. , 2004, Bone.

[9]  Deepak Vashishth,et al.  Rising crack-growth-resistance behavior in cortical bone: implications for toughness measurements. , 2004, Journal of biomechanics.

[10]  R O Ritchie,et al.  On the origin of the toughness of mineralized tissue: microcracking or crack bridging? , 2004, Bone.

[11]  D. K. Sehgal,et al.  Design of a simple, versatile, small-specimen punch test setup for determination of the mechanical behavior of materials , 2002 .

[12]  S M Kurtz,et al.  A small punch test technique for characterizing the elastic modulus and fracture behavior of PMMA bone cement used in total joint replacement. , 2001, Biomaterials.

[13]  C. Jewett,et al.  Plasticity-induced damage layer is a precursor to wear in radiation-cross-linked UHMWPE acetabular components for total hip replacement. Ultra-high-molecular-weight polyethylene. , 1999, The Journal of arthroplasty.

[14]  C. Jewett,et al.  Validation of a small punch testing technique to characterize the mechanical behaviour of ultra-high-molecular-weight polyethylene. , 1997, Biomaterials.

[15]  D Vashishth,et al.  Crack growth resistance in cortical bone: concept of microcrack toughening. , 1997, Journal of biomechanics.

[16]  H. Takahashi,et al.  Small punch test to predict ductile fracture toughness JIC and brittle fracture toughness KIC , 1991 .

[17]  Otto Buck,et al.  Small punch test evaluation of intergranular embrittlement of an alloy steel , 1983 .

[18]  M. L. Hamilton,et al.  Bend testing for miniature disks , 1982 .

[19]  Laura Vergani,et al.  Bone Toughness and Crack Propagation: An Experimental Study , 2014 .

[20]  D. K. Sehgal,et al.  Detailed Analysis of Deformation Behavior of Plexiform Bone Using Small Specimen Testing and Finite Element Simulation , 2014 .

[21]  D. Vashishth,et al.  Cohesive finite element modeling of age-related toughness loss in human cortical bone. , 2006, Journal of biomechanics.

[22]  R O Ritchie,et al.  Mechanistic aspects of fracture and R-curve behavior in human cortical bone. , 2005, Biomaterials.

[23]  D Vashishth,et al.  Experimental validation of a microcracking-based toughening mechanism for cortical bone. , 2003, Journal of biomechanics.

[24]  Hideaki Takahashi,et al.  Characterization of Fracture Behavior in Small Punch Test by Combined Recrystallization-Etch Method and Rigid Plastic Analysis , 1987 .