A tight Erdős-Pósa function for long cycles
暂无分享,去创建一个
[1] Paul Wollan,et al. Disjoint cycles intersecting a set of vertices , 2012, J. Comb. Theory, Ser. B.
[2] Chandra Chekuri,et al. Large-treewidth graph decompositions and applications , 2013, STOC '13.
[3] Reinhard Diestel,et al. Graph Theory , 1997 .
[4] Etienne Birmelé. Tree-width and circumference of graphs , 2003, J. Graph Theory.
[5] M. Simonovits. A new proof and generalizations of a theorem of Erdős and Pósa on graphs withoutk+1 independent circuits , 1967 .
[6] H. Sachs,et al. Regukre Graphen gegebener Taillenweite mit minimaler Knotenzahl , 1963 .
[7] D. Thilikos,et al. Recent techniques and results on the Erd\H{o}s-P\'osa property , 2016 .
[8] A. Lubotzky,et al. Ramanujan graphs , 2017, Comb..
[9] Henning Bruhn,et al. Long cycles through prescribed vertices have the Erd\H{o}s-P\'osa property , 2014, 1412.2894.
[10] Samuel Fiorini,et al. A Tighter Erdős‐Pósa Function for Long Cycles , 2012, J. Graph Theory.
[11] Julia Böttcher,et al. Bandwidth, expansion, treewidth, separators and universality for bounded-degree graphs , 2009, Eur. J. Comb..
[12] Henning Bruhn,et al. Long Cycles have the Edge-Erdős-Pósa Property , 2016, Comb..
[13] Carsten Thomassen,et al. On the presence of disjoint subgraphs of a specified type , 1988, J. Graph Theory.
[14] Ken-ichi Kawarabayashi,et al. Packing cycles through prescribed vertices , 2011, J. Comb. Theory, Ser. B.
[15] L. Pósa,et al. On Independent Circuits Contained in a Graph , 1965, Canadian Journal of Mathematics.
[16] Bruce A. Reed,et al. The Erdős–Pósa Property For Long Circuits , 2007, Comb..
[17] P. Erd Os,et al. On the maximal number of disjoint circuits of a graph , 2022, Publicationes Mathematicae Debrecen.
[18] Henning Bruhn,et al. Long cycles through prescribed vertices have the Erdős‐Pósa property , 2018, J. Graph Theory.
[19] Dimitrios M. Thilikos,et al. Recent techniques and results on the Erdős-Pósa property , 2016, Discret. Appl. Math..
[20] R. Lathe. Phd by thesis , 1988, Nature.
[21] J. Adrian Bondy,et al. OSA PROPERTY FOR LONG CIRCUITS , 2007 .