A tight Erdős-Pósa function for long cycles

Abstract A classic result of Erdős and Posa states that any graph either contains k vertex-disjoint cycles or can be made acyclic by deleting at most O ( k log ⁡ k ) vertices. Birmele, Bondy, and Reed (2007) raised the following more general question: given numbers l and k , what is the optimal function f ( l , k ) such that every graph G either contains k vertex-disjoint cycles of length at least l or contains a set X of f ( l , k ) vertices that meets all cycles of length at least l ? In this paper, we answer that question by proving that f ( l , k ) = Θ ( k l + k log ⁡ k ) . As a corollary, the tree-width of any graph G that does not contain k vertex-disjoint cycles of length at least l is of order O ( k l + k log ⁡ k ) . This is also optimal up to constant factors and answers another question of Birmele, Bondy, and Reed (2007).

[1]  Paul Wollan,et al.  Disjoint cycles intersecting a set of vertices , 2012, J. Comb. Theory, Ser. B.

[2]  Chandra Chekuri,et al.  Large-treewidth graph decompositions and applications , 2013, STOC '13.

[3]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[4]  Etienne Birmelé Tree-width and circumference of graphs , 2003, J. Graph Theory.

[5]  M. Simonovits A new proof and generalizations of a theorem of Erdős and Pósa on graphs withoutk+1 independent circuits , 1967 .

[6]  H. Sachs,et al.  Regukre Graphen gegebener Taillenweite mit minimaler Knotenzahl , 1963 .

[7]  D. Thilikos,et al.  Recent techniques and results on the Erd\H{o}s-P\'osa property , 2016 .

[8]  A. Lubotzky,et al.  Ramanujan graphs , 2017, Comb..

[9]  Henning Bruhn,et al.  Long cycles through prescribed vertices have the Erd\H{o}s-P\'osa property , 2014, 1412.2894.

[10]  Samuel Fiorini,et al.  A Tighter Erdős‐Pósa Function for Long Cycles , 2012, J. Graph Theory.

[11]  Julia Böttcher,et al.  Bandwidth, expansion, treewidth, separators and universality for bounded-degree graphs , 2009, Eur. J. Comb..

[12]  Henning Bruhn,et al.  Long Cycles have the Edge-Erdős-Pósa Property , 2016, Comb..

[13]  Carsten Thomassen,et al.  On the presence of disjoint subgraphs of a specified type , 1988, J. Graph Theory.

[14]  Ken-ichi Kawarabayashi,et al.  Packing cycles through prescribed vertices , 2011, J. Comb. Theory, Ser. B.

[15]  L. Pósa,et al.  On Independent Circuits Contained in a Graph , 1965, Canadian Journal of Mathematics.

[16]  Bruce A. Reed,et al.  The Erdős–Pósa Property For Long Circuits , 2007, Comb..

[17]  P. Erd Os,et al.  On the maximal number of disjoint circuits of a graph , 2022, Publicationes Mathematicae Debrecen.

[18]  Henning Bruhn,et al.  Long cycles through prescribed vertices have the Erdős‐Pósa property , 2018, J. Graph Theory.

[19]  Dimitrios M. Thilikos,et al.  Recent techniques and results on the Erdős-Pósa property , 2016, Discret. Appl. Math..

[20]  R. Lathe Phd by thesis , 1988, Nature.

[21]  J. Adrian Bondy,et al.  OSA PROPERTY FOR LONG CIRCUITS , 2007 .