Sensitivity and engineered resistance of myeloid leukemia cells to BRD9 inhibition

[1]  Andrew J. Bannister,et al.  Discovery of I-BRD9, a Selective Cell Active Chemical Probe for Bromodomain Containing Protein 9 Inhibition. , 2016, Journal of medicinal chemistry.

[2]  S. Knapp,et al.  Structure-Based Design of an in Vivo Active Selective BRD9 Inhibitor , 2016, Journal of medicinal chemistry.

[3]  S. Knapp,et al.  Discovery of a Chemical Tool Inhibitor Targeting the Bromodomains of TRIM24 and BRPF , 2015, Journal of medicinal chemistry.

[4]  Stefan Knapp,et al.  Discovery and Characterization of GSK2801, a Selective Chemical Probe for the Bromodomains BAZ2A and BAZ2B , 2015, Journal of medicinal chemistry.

[5]  K. Helin,et al.  SWI/SNF Subunits SMARCA4, SMARCD2 and DPF2 Collaborate in MLL-Rearranged Leukaemia Maintenance , 2015, PloS one.

[6]  John P. Overington,et al.  The promise and peril of chemical probes. , 2015, Nature chemical biology.

[7]  Parantu K. Shah,et al.  The SMARCA2/4 ATPase Domain Surpasses the Bromodomain as a Drug Target in SWI/SNF-Mutant Cancers: Insights from cDNA Rescue and PFI-3 Inhibitor Studies. , 2015, Cancer research.

[8]  James E. Bradner,et al.  Phthalimide conjugation as a strategy for in vivo target protein degradation , 2015, Science.

[9]  C. Crews,et al.  Hijacking the E3 Ubiquitin Ligase Cereblon to Efficiently Target BRD4. , 2015, Chemistry & biology.

[10]  K. Wood,et al.  NanoBRET--A Novel BRET Platform for the Analysis of Protein-Protein Interactions. , 2015, ACS chemical biology.

[11]  A. Ciulli,et al.  Selective Small Molecule Induced Degradation of the BET Bromodomain Protein BRD4 , 2015, ACS chemical biology.

[12]  J. Kinney,et al.  Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains , 2015, Nature Biotechnology.

[13]  S. Knapp,et al.  LP99: Discovery and Synthesis of the First Selective BRD7/9 Bromodomain Inhibitor** , 2015, Angewandte Chemie.

[14]  M. Höss,et al.  Small molecule inhibitors of bromodomain-acetyl-lysine interactions. , 2015, ACS chemical biology.

[15]  Sumio Sugano,et al.  Aberrant transcriptional regulations in cancers: genome, transcriptome and epigenome analysis of lung adenocarcinoma cell lines , 2014, Nucleic acids research.

[16]  M. T. McCabe,et al.  EZH2 as a potential target in cancer therapy. , 2014, Epigenomics.

[17]  C. Vakoc,et al.  A rationale to target the SWI/SNF complex for cancer therapy. , 2014, Trends in genetics : TIG.

[18]  Julian Blagg,et al.  Chemical biology approaches to target validation in cancer. , 2014, Current opinion in pharmacology.

[19]  S. Knapp,et al.  Discovery and Optimization of Small-Molecule Ligands for the CBP/p300 Bromodomains , 2014, Journal of the American Chemical Society.

[20]  G. Crabtree,et al.  Essential role of BRG, the ATPase subunit of BAF chromatin remodeling complexes, in leukemia maintenance. , 2014, Blood.

[21]  Christof Fellmann,et al.  An optimized microRNA backbone for effective single-copy RNAi. , 2013, Cell reports.

[22]  Ming Yu,et al.  Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation , 2013, Genes & development.

[23]  J. Yokota,et al.  A synthetic lethality-based strategy to treat cancers harboring a genetic deficiency in the chromatin remodeling factor BRG1. , 2013, Cancer research.

[24]  S. Orkin,et al.  Targeted Disruption of the EZH2/EED Complex Inhibits EZH2-dependent Cancer , 2013, Nature chemical biology.

[25]  G. Crabtree,et al.  Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy , 2013, Nature Genetics.

[26]  P. Clemons,et al.  Target identification and mechanism of action in chemical biology and drug discovery. , 2013, Nature chemical biology.

[27]  Yan Liu,et al.  EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations , 2012, Nature.

[28]  Stefan Knapp,et al.  The bromodomain interaction module , 2012, FEBS letters.

[29]  A. Gingras,et al.  Histone Recognition and Large-Scale Structural Analysis of the Human Bromodomain Family , 2012, Cell.

[30]  H. Stunnenberg,et al.  SS18 Together with Animal-Specific Factors Defines Human BAF-Type SWI/SNF Complexes , 2012, PloS one.

[31]  Jun O. Liu,et al.  Identification and validation of protein targets of bioactive small molecules. , 2012, Bioorganic & medicinal chemistry.

[32]  S. Armstrong,et al.  Polycomb repressive complex 2 is required for MLL-AF9 leukemia , 2012, Proceedings of the National Academy of Sciences.

[33]  S. Lowe,et al.  RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia , 2011, Nature.

[34]  Asher Mullard,et al.  Reliability of 'new drug target' claims called into question , 2011, Nature Reviews Drug Discovery.

[35]  A. Musacchio,et al.  A general framework for inhibitor resistance in protein kinases. , 2011, Chemistry & biology.

[36]  Ronald J. Moore,et al.  Reversed‐phase chromatography with multiple fraction concatenation strategy for proteome profiling of human MCF10A cells , 2011, Proteomics.

[37]  Clemens Vonrhein,et al.  Data processing and analysis with the autoPROC toolbox , 2011, Acta crystallographica. Section D, Biological crystallography.

[38]  D. Reinberg,et al.  The Polycomb complex PRC2 and its mark in life , 2011, Nature.

[39]  Christof Fellmann,et al.  Toolkit for evaluating genes required for proliferation and survival using tetracycline-regulated RNAi , 2011, Nature Biotechnology.

[40]  C. Rice,et al.  Suppression of inflammation by a synthetic histone mimic , 2010, Nature.

[41]  William B. Smith,et al.  Selective inhibition of BET bromodomains , 2010, Nature.

[42]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[43]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[44]  Ronghua Chen,et al.  Digital transcriptome profiling using selective hexamer priming for cDNA synthesis , 2009, Nature Methods.

[45]  G. Crabtree,et al.  Understanding the Words of Chromatin Regulation , 2009, Cell.

[46]  Christopher R. Vakoc,et al.  DOT1L/KMT4 Recruitment and H3K79 Methylation Are Ubiquitously Coupled with Gene Transcription in Mammalian Cells , 2008, Molecular and Cellular Biology.

[47]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[48]  J. Gebler,et al.  Two-dimensional separation of peptides using RP-RP-HPLC system with different pH in first and second separation dimensions. , 2005, Journal of separation science.

[49]  Ming-Ming Zhou,et al.  Selective small molecules blocking HIV-1 Tat and coactivator PCAF association. , 2005, Journal of the American Chemical Society.

[50]  K. Parker,et al.  Multiplexed Protein Quantitation in Saccharomyces cerevisiae Using Amine-reactive Isobaric Tagging Reagents*S , 2004, Molecular & Cellular Proteomics.

[51]  D. N. Perkins,et al.  Probability‐based protein identification by searching sequence databases using mass spectrometry data , 1999, Electrophoresis.

[52]  Lei Zeng,et al.  Structure and ligand of a histone acetyltransferase bromodomain , 1999, Nature.

[53]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.