Hamel's formalism and variational integrators on a sphere
暂无分享,去创建一个
[1] W. Hamilton. XV. On a general method in dynamics; by which the study of the motions of all free systems of attracting or repelling points is reduced to the search and differentiation of one central relation, or characteristic function , 1834, Philosophical Transactions of the Royal Society of London.
[2] A. Bobenko,et al. Discrete Lagrangian Reduction, Discrete Euler–Poincaré Equations, and Semidirect Products , 1999, math/9906108.
[3] William Rowan Hamilton. Second Essay on a General Method in Dynamics. [Abstract] , 1830 .
[4] J. Marsden,et al. Discrete Euler-Poincaré and Lie-Poisson equations , 1999, math/9909099.
[5] Anthony M. Bloch,et al. Variational structures for Hamel's equations and stabilization , 2012 .
[6] A. Bobenko,et al. Discrete Time Lagrangian Mechanics on Lie Groups,¶with an Application to the Lagrange Top , 1999 .
[7] Jerrold E. Marsden,et al. Quasivelocities and symmetries in non-holonomic systems , 2009 .
[8] J. Marsden,et al. Introduction to mechanics and symmetry , 1994 .
[9] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.
[10] G. Hamel,et al. Die Lagrange-Euler'schen gleichungen der Mechanik , 1903 .
[11] J. Marsden,et al. Discrete mechanics and variational integrators , 2001, Acta Numerica.
[12] C. Marle,et al. "Sur une forme nouvelle des ´ equations de la M´ ecanique" , 2013 .
[13] H. C. Andersen. Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations , 1983 .
[14] P. Ehrenfest,et al. Die Lagrange-Eulersche Gleichungen der Mechanik , 1905 .
[15] David Cohen. Trigonometric schemes for stiff second-order SDEs , 2006 .
[16] Yuri N. Fedorov,et al. Discrete Nonholonomic LL Systems on Lie Groups , 2004, math/0409415.
[17] Taeyoung Lee,et al. Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/nme.2603 Lagrangian mechanics and variational integrators on two-spheres , 2022 .
[18] A. Bloch,et al. Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.
[19] J. Marsden,et al. Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators , 1988 .
[20] Robert I. McLachlan,et al. Integrators for Nonholonomic Mechanical Systems , 2006, J. Nonlinear Sci..