Simulation-based optimum sensor selection design for an uncertain EMS system via Monte-Carlo technique

Optimum sensor selection in control system design is often a non-trivial task to do. This paper presents a systematic design framework for selecting the sensors in an optimum manner that simultaneously satisfies complex system performance requirements such as optimum performance and robustness to structured uncertainties. The framework combines modern control design methods, Monte Carlo techniques and genetic algorithms. Without loosing generality its efficacy is tested on an electromagnetic suspension system via appropriate realistic simulations.

[1]  R. Tempo,et al.  Randomized Algorithms for Analysis and Control of Uncertain Systems , 2004 .

[2]  J. Pearson,et al.  MAGLEV suspensions - A sensor optimisation framework , 2008, 2008 16th Mediterranean Conference on Control and Automation.

[3]  Konstantinos Michail,et al.  Optimised configuration of sensing elements for control and fault tolerance applied to an electro-magnetic suspension system , 2009 .

[4]  Keith Glover,et al.  A loop-shaping design procedure using H/sub infinity / synthesis , 1992 .

[5]  Roger M. Goodall,et al.  The theory of electromagnetic levitation , 1985 .

[6]  Roger M. Goodall,et al.  Dynamics and control requirements for EMS Maglev suspensions , 2004 .

[7]  Ju Lee,et al.  Review of maglev train technologies , 2006 .

[8]  Roger M. Goodall,et al.  EMS SYSTEMS: OPTIMISED SENSOR CONFIGURATIONS FOR CONTROL AND SENSOR FAULT TOLERANCE , 2009 .

[9]  Glenn Vinnicombe ℋ∞Loop-shaping , 2000 .

[10]  Carlos Artemio Coello-Coello,et al.  Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art , 2002 .

[11]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[12]  Roger M. Goodall,et al.  Generalised Design Models For EMS Maglev , 2008 .

[13]  Costantino M. Lagoa,et al.  Randomized algorithms for analysis and control of uncertain systems, Roberto Tempo, Giuseppe Calafiore and Fabrizio Dabbene, Springer, London, 2005, 344pp. Price $119, ISBN 1-85233-524-6 , 2006 .

[14]  Marc M. J. van de Wal,et al.  A review of methods for input/output selection , 2001, Autom..

[15]  Roger M. Goodall Dynamic Characteristics in the Design of Maglev Suspensions , 1994 .

[16]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[17]  Peter J. Fleming,et al.  Evolutionary algorithms in control systems engineering: a survey , 2002 .

[18]  David W. Coit,et al.  Multi-objective optimization using genetic algorithms: A tutorial , 2006, Reliab. Eng. Syst. Saf..