Nanophotonic Waveguide Enhanced Raman Spectroscopy of Biological Submonolayers

Characterizing a monolayer of biological molecules has been a major challenge. We demonstrate nanophotonic waveguide enhanced Raman spectroscopy (NWERS) of monolayers in the near-infrared region, enabling real-time measurements of the hybridization of DNA strands and the density of submonolayers of biotin–streptavidin complex immobilized on top of a photonics chip. NWERS is based on enhanced evanescent excitation and collection of spontaneous Raman scattering near nanophotonic waveguides, which for a 1 cm silicon nitride waveguide delivers a signal that is more than 4 orders of magnitude higher in comparison to a confocal Raman microscope. The reduced acquisition time and specificity of the signal allows for a quantitative and real-time characterization of surface species, hitherto not possible using Raman spectroscopy. NWERS provides a direct analytic tool for monolayer research and also opens a route to compact microscopeless lab-on-a-chip devices with integrated sources, spectrometers, and detectors fa...

[1]  Robert B. Gennis,et al.  Biomembranes: Molecular Structure and Function , 1988 .

[2]  D. Castner,et al.  Biomedical surface science: Foundations to frontiers , 2002 .

[3]  R. Dasari,et al.  Surface-enhanced Raman scattering and biophysics , 2001 .

[4]  Mark R. Kagan,et al.  Reduction of Fluorescence Interference in Raman Spectroscopy via Analyte Adsorption on Graphitic Carbon , 1994 .

[5]  R. Mathies,et al.  Resonance Raman cross-sections and vibronic analysis of rhodamine 6G from broadband stimulated Raman spectroscopy. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[6]  R. Richter,et al.  Formation of solid-supported lipid bilayers: an integrated view. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[7]  G. Gaines,et al.  An introduction to ultrathin organic films from Langmuir-Blodgett to self-assembly: By Abraham Ulman, Academic Press, New York, 1991. xxiii + 442. $65.00 , 1991 .

[8]  E. Southern,et al.  Molecular interactions on microarrays , 1999, Nature Genetics.

[9]  Roel Baets,et al.  Single mode waveguide platform for spontaneous and surface-enhanced on-chip Raman spectroscopy , 2016, Interface Focus.

[10]  R. A. McGill,et al.  Trace-gas Raman spectroscopy using functionalized waveguides , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[11]  Harry A Atwater,et al.  Broadband enhancement of light emission in silicon slot waveguides. , 2009, Optics express.

[12]  J. Doye,et al.  DNA hybridization kinetics: zippering, internal displacement and sequence dependence , 2013, Nucleic acids research.

[13]  J. D. Swalen,et al.  Raman Measurements on Thin Polymer Films and Organic Monolayers , 1980 .

[14]  K. Yao,et al.  Highly Uniform and Reproducible Surface Enhanced Raman Scattering on Air-stable Metallic Glassy Nanowire Array , 2014, Scientific Reports.

[15]  D. Basko,et al.  Raman spectroscopy as a versatile tool for studying the properties of graphene. , 2013, Nature nanotechnology.

[16]  J. Greve,et al.  WAVEGUIDE RAMAN SPECTROSCOPY OF THIN POLYMER LAYERS AND MONOLAYERS OF BIOMOLECULES USING HIGH REFRACTIVE INDEX WAVEGUIDES , 1996 .

[17]  P. Eisenberger,et al.  Extended x-ray absorption fine structure—its strengths and limitations as a structural tool , 1981 .

[18]  Andres Castellanos-Gomez,et al.  Why all the fuss about 2D semiconductors , 2016 .

[19]  K. Shepard,et al.  Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor. , 2011, Nature nanotechnology.

[20]  M. Srinivasan,et al.  Self-assembled molecular films of aminosilanes and their immobilization capacities. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[21]  R. McCreery,et al.  Quantitative surface Raman spectroscopy of physisorbed monolayers on glassy carbon , 1995 .

[22]  Roel Baets,et al.  Surface enhanced raman spectroscopy using a single mode nanophotonic-plasmonic platform , 2015, 1508.02189.

[23]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[24]  E. Diamandis,et al.  The biotin-(strept)avidin system: principles and applications in biotechnology. , 1991, Clinical chemistry.

[25]  Roel Baets,et al.  Efficiency of evanescent excitation and collection of spontaneous Raman scattering near high index contrast channel waveguides. , 2015, Optics express.

[26]  Roberto Cesareo,et al.  X-Ray fluorescence spectrometry , 2002 .

[27]  D. Rugar,et al.  Nanoscale magnetic resonance imaging , 2009, Proceedings of the National Academy of Sciences.

[28]  Hongzheng Chen,et al.  Graphene-like two-dimensional materials. , 2013, Chemical reviews.

[29]  M. Smyth,et al.  Oriented immobilization of antibodies and its applications in immunoassays and immunosensors. , 1996, The Analyst.

[30]  R. Zenobi,et al.  Minimally invasive characterization of covalent monolayer sheets using tip-enhanced Raman spectroscopy. , 2015, ACS nano.

[31]  Li-Jing Cheng,et al.  Nanoscale protein patterning by imprint lithography , 2004 .

[32]  Gil U. Lee,et al.  Scanning probe microscopy. , 2010, Current opinion in chemical biology.

[33]  Sunghoon Kwon,et al.  Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. , 2011, Nature nanotechnology.

[34]  Y. Okahata,et al.  Kinetic measurements of DNA hybridization on an oligonucleotide-immobilized 27-MHz quartz crystal microbalance. , 1998, Analytical chemistry.

[35]  D C Ward,et al.  Enzymatic synthesis of biotin-labeled polynucleotides: novel nucleic acid affinity probes. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Roel Baets,et al.  Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides. , 2014, Optics letters.

[37]  L. Bistričić,et al.  Conformational and vibrational analysis of gamma-aminopropyltriethoxysilane , 2007 .

[38]  G. Whitesides,et al.  Surface Plasmon Resonance Permits in Situ Measurement of Protein Adsorption on Self-Assembled Monolayers of Alkanethiolates on Gold , 1995 .

[39]  S. Arnold,et al.  Whispering-gallery-mode biosensing: label-free detection down to single molecules , 2008, Nature Methods.

[40]  O. Kranenburg,et al.  The KRAS oncogene: past, present, and future. , 2005, Biochimica et biophysica acta.

[41]  François Lagugné-Labarthet,et al.  SERS detection of streptavidin/biotin monolayer assemblies. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[42]  M. Strano,et al.  Hybridization kinetics and thermodynamics of DNA adsorbed to individually dispersed single-walled carbon nanotubes. , 2007, Small.

[43]  Karin Schroën,et al.  Covalent biofunctionalization of silicon nitride surfaces. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[44]  R. Baets,et al.  Low-Loss Singlemode PECVD Silicon Nitride Photonic Wire Waveguides for 532–900 nm Wavelength Window Fabricated Within a CMOS Pilot Line , 2013, IEEE Photonics Journal.

[45]  Vincent Mazet,et al.  Background removal from spectra by designing and minimising a non-quadratic cost function , 2005 .

[46]  Donald L. Smith,et al.  Mechanism of SiN x H y Deposition from NH 3 ‐ SiH4 Plasma , 1990 .

[47]  M. Heller DNA microarray technology: devices, systems, and applications. , 2002, Annual review of biomedical engineering.

[48]  C. Fagnano,et al.  Raman spectroscopic study of the avidin—biotin complex , 1995 .

[49]  Chengyu Liu,et al.  TiO2 Nanophotonic Sensors for Efficient Integrated Evanescent Raman Spectroscopy , 2016 .

[50]  J. Wendoloski,et al.  Structural origins of high-affinity biotin binding to streptavidin. , 1989, Science.

[51]  A. Shard,et al.  Quantitative analysis of adsorbed proteins by X-ray photoelectron spectroscopy. , 2011, Analytical chemistry.