Fisher information distance: a geometrical reading?
暂无分享,去创建一个
Sueli I. Rodrigues Costa | Sandra A. Santos | João Strapasson | S. Santos | S. Costa | J. Strapasson
[1] Yannick Berthoumieu,et al. K-Centroids-Based Supervised Classification of Texture Images Using the SIRV Modeling , 2013, GSI.
[2] Jesús Angulo,et al. Morphological Processing of Univariate Gaussian Distribution-Valued Images Based on Poincaré Upper-Half Plane Representation , 2014 .
[3] Amir Dembo,et al. Information theoretic inequalities , 1991, IEEE Trans. Inf. Theory.
[4] Frank Nielsen,et al. Statistical exponential families: A digest with flash cards , 2009, ArXiv.
[5] Kevin M. Carter,et al. Dimensionality reduction on statistical manifolds , 2009 .
[6] Frank Nielsen,et al. Sided and Symmetrized Bregman Centroids , 2009, IEEE Transactions on Information Theory.
[7] D. Ruppert. The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .
[8] Frank Nielsen,et al. Matrix Information Geometry , 2012 .
[9] Axthonv G. Oettinger,et al. IEEE Transactions on Information Theory , 1998 .
[10] Anand Rangarajan,et al. Information Geometry for Landmark Shape Analysis: Unifying Shape Representation and Deformation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[11] Shun-ichi Amari,et al. Methods of information geometry , 2000 .
[12] A. Hero,et al. LEARNING ON STATISTICAL MANIFOLDS FOR CLUSTERING AND VISUALIZATION , 2007 .
[13] Josep M. Oller,et al. A distance between multivariate normal distributions based in an embedding into the Siegel group , 1990 .
[14] R. Fisher,et al. On the Mathematical Foundations of Theoretical Statistics , 1922 .
[15] Sueli I. Rodrigues Costa,et al. Fisher information matrix and hyperbolic geometry , 2005, IEEE Information Theory Workshop, 2005..
[16] L. Skovgaard. A Riemannian geometry of the multivariate normal model , 1984 .
[17] J. M. Oller,et al. AN EXPLICIT SOLUTION OF INFORMATION GEODESIC EQUATIONS FOR THE MULTIVARIATE NORMAL MODEL , 1991 .
[18] Miroslav Lovric,et al. Multivariate Normal Distributions Parametrized as a Riemannian Symmetric Space , 2000 .
[19] T. Cover,et al. IEEE TRANSACTIONSON INFORMATIONTHEORY,VOL. IT-30,N0. 6,NOVEmER1984 Correspondence On the Similarity of the Entropy Power Inequality The preceeding equations allow the entropy power inequality and the Brunn-Minkowski Inequality to be rewritten in the equiv , 2022 .
[20] C. Atkinson. Rao's distance measure , 1981 .
[21] I. Holopainen. Riemannian Geometry , 1927, Nature.
[22] Leo Liberti,et al. The interval Branch-and-Prune algorithm for the discretizable molecular distance geometry problem with inexact distances , 2011, Journal of Global Optimization.
[23] Leo Liberti,et al. Euclidean Distance Geometry and Applications , 2012, SIAM Rev..
[24] R. A. Leibler,et al. On Information and Sufficiency , 1951 .
[25] Trevor Hastie,et al. The Elements of Statistical Learning , 2001 .
[26] A. Beardon. The Geometry of Discrete Groups , 1995 .
[27] Daniel Silk,et al. Optimizing Threshold - Schedules for Approximate Bayesian Computation Sequential Monte Carlo Samplers: Applications to Molecular Systems , 2012 .
[28] S. Stigler. Fisher in 1921 , 2005 .
[29] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[30] Frank Nielsen,et al. Total Bregman divergence and its applications to shape retrieval , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
[31] S. Filippi,et al. Information Geometry and Sequential Monte Carlo , 2012, 1212.0764.
[32] Guido Van Oost,et al. Multivariate Texture Discrimination Based on Geodesics to Class Centroids on a Generalized Gaussian Manifold , 2013, GSI.
[33] C. R. Rao,et al. Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .