On the partial terminal Steiner tree problem

Abstract We investigate a practical variant of the well-known graph Steiner tree problem. For a complete graph G=(V,E) with length function l:E→R+ and two vertex subsets R⊂V and R′⊆R, a partial terminal Steiner tree is a Steiner tree which contains all vertices in R such that all vertices in R∖R′ belong to the leaves of this Steiner tree. The partial terminal Steiner tree problem is to find a partial terminal Steiner tree T whose total lengths ∑(u,v)∈Tl(u,v) is minimum. In this paper, we show that the problem is both NP-complete and MAX SNP-hard when the lengths of edges are restricted to either 1 or 2. We also provide an approximation algorithm for the problem.

[1]  Dan Graur,et al.  Fundamentals of Molecular Evolution, 2nd Edition , 2000 .

[2]  Alex Zelikovsky,et al.  Improved Steiner tree approximation in graphs , 2000, SODA '00.

[3]  Thomas H. Cormen,et al.  Introduction to algorithms [2nd ed.] , 2001 .

[4]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[5]  Alex Zelikovsky,et al.  Tighter Bounds for Graph Steiner Tree Approximation , 2005, SIAM J. Discret. Math..

[6]  Robert Krauthgamer,et al.  Polylogarithmic inapproximability , 2003, STOC '03.

[7]  Wen-Hsiung Li,et al.  Fundamentals of molecular evolution , 1990 .

[8]  Sun-Yuan Hsieh,et al.  On the Partial-Terminal Steiner Tree Problem , 2008, ISPAN.

[9]  José Coelho de Pina,et al.  Algorithms for Terminal Steiner Trees , 2005, COCOON.

[10]  David S. Johnson,et al.  The Rectilinear Steiner Problem is NP-Complete , 1977 .

[11]  Chuan Yi Tang,et al.  The Full Steiner Tree Problem in Phylogeny , 2002, COCOON.

[12]  Piotr Berman,et al.  Improved approximations for the Steiner tree problem , 1992, SODA '92.

[13]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[14]  Mihalis Yannakakis,et al.  Optimization, approximation, and complexity classes , 1991, STOC '88.

[15]  David S. Johnson,et al.  The Rectilinear Steiner Tree Problem is NP Complete , 1977, SIAM Journal of Applied Mathematics.

[16]  Marshall W. Bern,et al.  The Steiner Problem with Edge Lengths 1 and 2 , 1989, Inf. Process. Lett..

[17]  Ding-Zhu Du,et al.  The k-Steiner Ratio in Graphs , 1997, SIAM J. Comput..

[18]  R. Graham,et al.  The steiner problem in phylogeny is NP-complete , 1982 .

[19]  Marshall W. Bern,et al.  Faster exact algorithms for steiner trees in planar networks , 1990, Networks.

[20]  R. Ravi,et al.  A polylogarithmic approximation algorithm for the group Steiner tree problem , 2000, SODA '98.

[21]  Andrew B. Kahng,et al.  On wirelength estimations for row-based placement , 1998, ISPD '98.

[22]  Junhyong Kim,et al.  Tutorial on Phylogenetic Tree Estimation , 1999, ISMB 1999.

[23]  D. West Introduction to Graph Theory , 1995 .

[24]  D. Du,et al.  Steiner Trees in Industry , 2002 .

[25]  Chuan Yi Tang,et al.  On the Full and Bottleneck Full Steiner Tree Problems , 2003, COCOON.

[26]  A. Eyre-Walker Fundamentals of Molecular Evolution (2nd edn) , 2000, Heredity.

[27]  Andrew B. Kahng,et al.  On wirelength estimations for row-based placement , 1998, ISPD '98.

[28]  Stefan Hougardy,et al.  On approximation algorithms for the terminal Steiner tree problem , 2004, Inf. Process. Lett..

[29]  A. Kahng,et al.  On optimal interconnections for VLSI , 1994 .

[30]  Chuan Yi Tang,et al.  The full Steiner tree problem , 2003, Theor. Comput. Sci..

[31]  Clifford Stein,et al.  Introduction to Algorithms, 2nd edition. , 2001 .

[32]  Hans Jürgen Prömel,et al.  A 1.598 approximation algorithm for the Steiner problem in graphs , 1999, SODA '99.

[33]  David S. Johnson,et al.  The Complexity of Computing Steiner Minimal Trees , 1977 .

[34]  Guohui Lin,et al.  On the terminal Steiner tree problem , 2002, Inf. Process. Lett..

[35]  Ding-Zhu Du on Component-size Bounded Steiner Trees , 1995, Discret. Appl. Math..

[36]  Carsten Lund,et al.  Proof verification and the hardness of approximation problems , 1998, JACM.