Beyond LDL-C lowering: distinct molecular sphingolipids are good indicators of proprotein convertase subtilisin/kexin type 9 (PCSK9) deficiency.

[1]  C. Sirtori,et al.  Clinical response to statins: Mechanism(s) of variable activity and adverse effects , 2012, Annals of medicine.

[2]  Kim Ekroos,et al.  High throughput quantitative molecular lipidomics. , 2011, Biochimica et biophysica acta.

[3]  I. Haviv,et al.  Plasma Lipidomic Analysis of Stable and Unstable Coronary Artery Disease , 2011, Arteriosclerosis, thrombosis, and vascular biology.

[4]  A. Soutar Unexpected roles for PCSK9 in lipid metabolism , 2011, Current opinion in lipidology.

[5]  E. Spatz,et al.  Statin myopathy: A common dilemma not reflected in clinical trials , 2011, Cleveland Clinic Journal of Medicine.

[6]  David W. Andrews,et al.  Removing bias against membrane proteins in interaction networks , 2011, BMC Systems Biology.

[7]  Børge G Nordestgaard,et al.  PCSK9 R46L, low-density lipoprotein cholesterol levels, and risk of ischemic heart disease: 3 independent studies and meta-analyses. , 2010, Journal of the American College of Cardiology.

[8]  Kim Ekroos,et al.  High-throughput shotgun lipidomics by quadrupole time-of-flight mass spectrometry. , 2009, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[9]  Jonathan C. Cohen,et al.  PCSK9: a convertase that coordinates LDL catabolism Published, JLR Papers in Press, November 19, 2008. , 2009, Journal of Lipid Research.

[10]  Annik Prat,et al.  Proprotein convertase subtilisin/kexin type 9 (PCSK9): Hepatocyte‐specific low‐density lipoprotein receptor degradation and critical role in mouse liver regeneration , 2008, Hepatology.

[11]  X. Deng,et al.  SREBPs: the crossroads of physiological and pathological lipid homeostasis , 2008, Trends in Endocrinology & Metabolism.

[12]  K. Ekroos Unraveling Glycerophospholipidomes by Lipidomics , 2008 .

[13]  Feng Wang Biomarker Methods in Drug Discovery and Development , 2008, Methods in Pharmacology and Toxicology™.

[14]  G. Lambert Unravelling the functional significance of PCSK9 , 2007, Current opinion in lipidology.

[15]  A. Prat,et al.  The proprotein convertases are potential targets in the treatment of dyslipidemia , 2007, Journal of Molecular Medicine.

[16]  Jonathan C. Cohen,et al.  Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. , 2006, The New England journal of medicine.

[17]  Gerd Schmitz,et al.  High throughput quantification of cholesterol and cholesteryl ester by electrospray ionization tandem mass spectrometry (ESI-MS/MS). , 2006, Biochimica et biophysica acta.

[18]  A. Merrill,et al.  Sphingolipidomics: high-throughput, structure-specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry. , 2005, Methods.

[19]  Alexander Pertsemlidis,et al.  Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9 , 2005, Nature Genetics.

[20]  Christer S. Ejsing,et al.  Charting molecular composition of phosphatidylcholines by fatty acid scanning and ion trap MS3 fragmentation Published, JLR Papers in Press, August 16, 2003. DOI 10.1194/jlr.D300020-JLR200 , 2003, Journal of Lipid Research.

[21]  J. Weissenbach,et al.  Mutations in PCSK9 cause autosomal dominant hypercholesterolemia , 2003, Nature Genetics.

[22]  A. Prat,et al.  The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): Liver regeneration and neuronal differentiation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[23]  A. Shevchenko,et al.  Quantitative profiling of phospholipids by multiple precursor ion scanning on a hybrid quadrupole time-of-flight mass spectrometer. , 2002, Analytical chemistry.

[24]  W. März,et al.  Rationale and design of the LURIC study--a resource for functional genomics, pharmacogenomics and long-term prognosis of cardiovascular disease. , 2001, Pharmacogenomics.