Nonasymptotic Pseudo-State Estimation for a Class of Fractional Order Linear Systems

This paper aims at designing a nonasymptotic and robust pseudo-state estimator for a class of fractional order linear systems which can be transformed into the Brunovsky's observable canonical form of pseudo-state space representation with unknown initial conditions. First, this form is expressed by a fractional order linear differential equation involving the initial values of the fractional sequential derivatives of the output, based on which the modulating functions method is applied. Then, the former initial values and the fractional derivatives of the output are exactly given by algebraic integral formulae using a recursive way, which are used to nonasymptotically estimate the pseudo-state of the system in noisy environment. Second, the pseudo-state estimator is studied in discrete noisy case, which contains the numerical error due to a used numerical integration method, and the noise error contribution due to a class of stochastic processes. Then, the noise error contribution is analyzed, where an error bound useful for the selection of design parameter is provided. Finally, numerical examples illustrate the efficiency of the proposed pseudo-state estimator, where some comparisons with the fractional order Luenberger-like observer and a new fractional order $\mathcal{H}_{\infty}$-like observer are given.

[1]  Taous-Meriem Laleg-Kirati,et al.  Robust fractional order differentiators using generalized modulating functions method , 2015, Signal Process..

[2]  Shouming Zhong,et al.  Fractional-order sliding mode based extremum seeking control of a class of nonlinear systems , 2014, Autom..

[3]  Yan Li,et al.  H∞ and Sliding Mode Observers for Linear Time-Invariant Fractional-Order Dynamic Systems With Initial Memory Effect , 2014 .

[4]  I. Podlubny Fractional differential equations , 1998 .

[5]  Olivier Gibaru,et al.  Toward on-line robot vibratory modes estimation , 2014, 2014 American Control Conference.

[6]  Mathieu Moze,et al.  On bounded real lemma for fractional systems , 2008 .

[7]  Sridhar Ungarala,et al.  Batch scheme recursive parameter estimation of continuous-time systems using the modulating functions method , 1997, Autom..

[8]  Fang Hu,et al.  Stabilization of Quasi Integrable Hamiltonian Systems With Fractional Derivative Damping by Using Fractional Optimal Control , 2013, IEEE Transactions on Automatic Control.

[9]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[10]  Michel Fliess Critique du rapport signal à bruit en communications numériques -- Questioning the signal to noise ratio in digital communications , 2008, ArXiv.

[11]  Carl F. Lorenzo,et al.  Initialization in fractional order systems , 2001, 2001 European Control Conference (ECC).

[12]  Mathieu Moze,et al.  Pseudo state feedback stabilization of commensurate fractional order systems , 2009, 2009 European Control Conference (ECC).

[13]  Alain Oustaloup,et al.  From fractal robustness to the CRONE control , 1999 .

[14]  Heinz A. Preisig,et al.  Theory and application of the modulating function method—I. Review and theory of the method and theory of the spline-type modulating functions , 1993 .

[15]  Igor Podlubny,et al.  ADJOINT FRACTIONAL DIFFERENTIAL EXPRESSIONS AND OPERATORS , 2007 .

[16]  Christophe Farges,et al.  Fractional systems state space description: some wrong ideas and proposed solutions , 2014 .

[17]  Yong-Hong Lan,et al.  Observer-based robust control of a (1⩽ a ≪ 2) fractional-order uncertain systems: a linear matrix inequality approach , 2012 .

[18]  Wilfrid Perruquetti,et al.  Universal Robust Adaptive Control of Robot Manipulators Using Real Time Estimation , 2015 .

[19]  B. Ross,et al.  The development of fractional calculus 1695–1900 , 1977 .

[20]  D. Luenberger Observers for multivariable systems , 1966 .

[21]  J. Sabatier,et al.  Crone control of a nonlinear hydraulic actuator , 2002 .

[22]  Heinz Unbehauen,et al.  A review of identification in continuous-time systems , 1998 .

[23]  Michel Fliess,et al.  Analyse non standard du bruit , 2006, ArXiv.

[24]  Guido Herrmann,et al.  A novel robust adaptive control algorithm with finite-time online parameter estimation of a humanoid robot arm , 2014, Robotics Auton. Syst..

[25]  Mohamed Darouach,et al.  H∞ observer design for linear fractional-order systems in time and frequency domains , 2014, 2014 European Control Conference (ECC).

[26]  T. Hartley,et al.  Dynamics and Control of Initialized Fractional-Order Systems , 2002 .

[27]  Mohamed Darouach,et al.  Observer-based control for fractional-order continuous-time systems , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[28]  Giuseppe Fedele,et al.  A Power Electrical Signal Tracking Strategy Based on the Modulating Functions Method , 2009, IEEE Transactions on Industrial Electronics.

[29]  Richard L. Magin,et al.  Fractional calculus models of complex dynamics in biological tissues , 2010, Comput. Math. Appl..

[30]  Olivier Gibaru,et al.  Parameters estimation of a noisy sinusoidal signal with time-varying amplitude , 2011, 2011 19th Mediterranean Conference on Control & Automation (MED).

[31]  Driss Boutat,et al.  An algebraic fractional order differentiator for a class of signals satisfying a linear differential equation , 2015, Signal Process..

[32]  Christophe Farges,et al.  On Observability and Pseudo State Estimation of Fractional Order Systems , 2012, Eur. J. Control.

[33]  Olivier Gibaru,et al.  Fractional Order Differentiation by Integration and Error Analysis in Noisy Environment , 2013, IEEE Transactions on Automatic Control.

[34]  Giuseppe Fedele,et al.  A recursive scheme for frequency estimation using the modulating functions method , 2010, Appl. Math. Comput..

[35]  Olivier Gibaru,et al.  Non-asymptotic state estimation for a class of linear time-varying systems with unknown inputs , 2014 .

[36]  Marvin Shinbrot On the analysis of linear and nonlinear dynamical systems from transient-response data , 1954 .

[37]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[38]  A. Ralston A first course in numerical analysis , 1965 .

[39]  Bijnan Bandyopadhyay,et al.  Finite-Time Stabilization of Fractional Order Uncertain Chain of Integrator: An Integral Sliding Mode Approach , 2013, IEEE Transactions on Automatic Control.

[40]  Dominik Sierociuk,et al.  OBSERVER FOR DISCRETE FRACTIONAL ORDER STATE-SPACE SYSTEMS , 2006 .

[41]  Olivier Gibaru,et al.  Identification of fractional order systems using modulating functions method , 2013, 2013 American Control Conference.

[42]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .