Numerical solution of two phase solidification problem using dynamic substructuring based on adaptive error estimation
暂无分享,去创建一个
[1] K. Tamma,et al. Hierarchical p-version finite elements and adaptive a posteriori computational formulations for two-dimensional thermal analysis , 1989 .
[2] John E. Dolbow,et al. Solving thermal and phase change problems with the eXtended finite element method , 2002 .
[3] Ruo Li,et al. A multi-mesh adaptive finite element approximation to phase field models , 2009 .
[4] Somnath Ghosh,et al. AN ARBITRARY LAGRANGIAN-EULERIAN FINITE ELEMENT MODEL FOR HEAT TRANSFER ANALYSIS OF SOLIDIFICATION PROCESSES , 1993 .
[5] A. A. Wheeler,et al. Thermodynamically-consistent phase-field models for solidification , 1992 .
[6] R. Szilard. Theories and Applications of Plate Analysis , 2004 .
[7] Yiming Rong,et al. Numerical simulation on solidification and thermal stress of continuous casting billet in mold based on meshless methods , 2007 .
[8] S. Ro. RECENT PROGRESS IN HEAT TRANSFER DURING MELTING AND SOLIDIFICATION PROCESSES , 1992 .
[9] N. Goldenfeld,et al. Adaptive Mesh Refinement Computation of Solidification Microstructures Using Dynamic Data Structures , 1998, cond-mat/9808216.
[10] O. C. Zienkiewicz,et al. A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .
[11] Veera Sundararaghavan,et al. Multi-scale homogenization of moving interface problems with flux jumps: application to solidification , 2009 .
[12] John M. Sullivan,et al. Heat conservation in deforming element phase change simulation , 1985 .
[13] Y. Im,et al. Finite element analysis of solidification of aluminum with natural convection , 1995 .
[14] Juan C. Heinrich,et al. Modeling dendritic growth of a binary alloy , 2003 .
[15] P. Liley,et al. Thermal Conductivity of the Elements , 1972 .
[16] Baskar Ganapathysubramanian,et al. Modelling dendritic solidification with melt convection using the extended finite element method , 2006, J. Comput. Phys..
[17] Nicholas Zabaras,et al. Front tracking thermomechanical model for hypoelastic-viscoplastic behavior in a solidifying body , 1990 .
[18] David L. Chopp,et al. A hybrid extended finite element/level set method for modeling phase transformations , 2002 .
[19] S. Atluri,et al. Temperature Field Due to a Moving Heat Source: A Moving Mesh Finite Element Analysis , 1985 .
[20] T. Belytschko,et al. The extended finite element method (XFEM) for solidification problems , 2002 .
[21] D. Juric,et al. A Front-Tracking Method for Dendritic Solidification , 1996 .
[22] K. Haghighi,et al. Adaptive Finite Element Analysis of Transient Thermal Problems , 1994 .
[23] S. I. Abu-eishah,et al. A NEW CORRELATION FOR THE SPECIFIC HEAT OF METALS, METAL OXIDES AND METAL FLUORIDES AS A FUNCTION OF TEMPERATURE , 2004 .
[24] C. Gandin,et al. A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes , 1994 .
[25] Ruo Li,et al. Efficient computation of dendritic growth with r-adaptive finite element methods , 2008, J. Comput. Phys..
[26] X. Richard Zhang,et al. Finite Element Analysis of Pulsed Laser Bending: The Effect of Melting and Solidification , 2004 .
[27] R. Lewis,et al. Finite element simulation of metal casting , 2000 .
[28] Boning Li,et al. An Interface-Fitted Finite Element Level Set Method with Application to Solidification and Solvation. , 2011, Communications in computational physics.
[29] Carlos Armando Duarte,et al. Transient analysis of sharp thermal gradients using coarse finite element meshes , 2011 .