The Road From Classical to Quantum Codes: A Hashing Bound Approaching Design Procedure

Powerful quantum error correction codes (QECCs) are required for stabilizing and protecting fragile qubits against the undesirable effects of quantum decoherence. Similar to classical codes, hashing bound approaching QECCs may be designed by exploiting a concatenated code structure, which invokes iterative decoding. Therefore, in this paper, we provide an extensive step-by-step tutorial for designing extrinsic information transfer (EXIT) chart-aided concatenated quantum codes based on the underlying quantum-to-classical isomorphism. These design lessons are then exemplified in the context of our proposed quantum irregular convolutional code (QIRCC), which constitutes the outer component of a concatenated quantum code. The proposed QIRCC can be dynamically adapted to match any given inner code using EXIT charts, hence achieving a performance close to the hashing bound. It is demonstrated that our QIRCC-based optimized design is capable of operating within 0.4 dB of the noise limit.

[1]  Reiner S. Thomä,et al.  EXIT Chart-Aided Adaptive Coding for Multilevel BICM With Turbo Equalization in Frequency-Selective MIMO Channels , 2007, IEEE Transactions on Vehicular Technology.

[2]  John Preskill,et al.  Battling decoherence: The fault-tolerant quantum computer , 1999 .

[3]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[4]  Lajos Hanzo,et al.  Maximum-Throughput Irregular Distributed Space-Time Code for Near-Capacity Cooperative Communications , 2010, IEEE Transactions on Vehicular Technology.

[5]  Sebastian Raaphorst Reed-Muller Codes , 2003 .

[6]  H. F. Chau Quantum Convolutional Error Correcting Codes , 1997 .

[7]  Markus Grassl,et al.  Convolutional and Tail-Biting Quantum Error-Correcting Codes , 2005, IEEE Transactions on Information Theory.

[8]  Joseph M. Renes,et al.  Quantum polar codes for arbitrary channels , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[9]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[10]  David J. C. MacKay,et al.  Sparse-graph codes for quantum error correction , 2004, IEEE Transactions on Information Theory.

[11]  Lajos Hanzo,et al.  EXIT-Chart-Aided Near-Capacity Quantum Turbo Code Design , 2015, IEEE Transactions on Vehicular Technology.

[12]  N. Sloane,et al.  Quantum error correction via codes over GF(4) , 1996, Proceedings of IEEE International Symposium on Information Theory.

[13]  Martin Rötteler,et al.  Constructions of Quantum Convolutional Codes , 2007, 2007 IEEE International Symposium on Information Theory.

[14]  Pradeep Kiran Sarvepalli,et al.  Quantum Convolutional BCH Codes , 2007, 2007 10th Canadian Workshop on Information Theory (CWIT).

[15]  H. Lou,et al.  Quantum error-correction using codes with low-density generator matrix , 2005, IEEE 6th Workshop on Signal Processing Advances in Wireless Communications, 2005..

[16]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[17]  Lajos Hanzo,et al.  EXIT Charts for System Design and Analysis , 2014, IEEE Communications Surveys & Tutorials.

[18]  P. Shor,et al.  QUANTUM-CHANNEL CAPACITY OF VERY NOISY CHANNELS , 1997, quant-ph/9706061.

[19]  Richard Cleve Quantum stabilizer codes and classical linear codes , 1997 .

[20]  Timothy F. Havel,et al.  Experimental Quantum Error Correction , 1998 .

[21]  Gilles Zémor,et al.  Quantum LDPC Codes With Positive Rate and Minimum Distance Proportional to the Square Root of the Blocklength , 2009, IEEE Transactions on Information Theory.

[22]  T. Beth,et al.  Quantum BCH Codes , 1999, quant-ph/9910060.

[23]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[24]  Shu Lin,et al.  Error Control Coding , 2004 .

[25]  Martin Rötteler,et al.  Quantum block and convolutional codes from self-orthogonal product codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[26]  Mark M. Wilde,et al.  Entanglement-Assisted Quantum Convolutional Coding , 2007, ArXiv.

[27]  Lajos Hanzo,et al.  Near-capacity turbo trellis coded modulation design based on EXIT charts and union bounds - [transactions papers] , 2008, IEEE Transactions on Communications.

[28]  Andrew M. Steane Quantum Reed-Muller codes , 1999, IEEE Trans. Inf. Theory.

[29]  Salah A. Aly,et al.  A Class of Quantum LDPC Codes Constructed From Finite Geometries , 2007, IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference.

[30]  Timothy F. Havel,et al.  EXPERIMENTAL QUANTUM ERROR CORRECTION , 1998, quant-ph/9802018.

[31]  Lajos Hanzo,et al.  Reduced-Complexity Syndrome-Based TTCM Decoding , 2013, IEEE Communications Letters.

[32]  Alain Couvreur,et al.  A construction of quantum LDPC codes from Cayley graphs , 2011, ISIT.

[33]  Lajos Hanzo,et al.  Near-Capacity Code Design for Entanglement-Assisted Classical Communication over Quantum Depolarizing Channels , 2013, IEEE Transactions on Communications.

[34]  Michael Tuchler,et al.  EXIT charts of irregular codes , 2002 .

[35]  Saikat Guha,et al.  Polar Codes for Degradable Quantum Channels , 2011, IEEE Transactions on Information Theory.

[36]  Soon Xin Ng,et al.  Low-Complexity Soft-Output Quantum-Assisted Multiuser Detection for Direct-Sequence Spreading and Slow Subcarrier-Hopping Aided SDMA-OFDM Systems , 2014, IEEE Access.

[37]  Lajos Hanzo,et al.  Quantum Search Algorithms, Quantum Wireless, and a Low-Complexity Maximum Likelihood Iterative Quantum Multi-User Detector Design , 2013, IEEE Access.

[38]  Joseph M. Renes,et al.  Polar Codes for Private and Quantum Communication Over Arbitrary Channels , 2012, IEEE Transactions on Information Theory.

[39]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[40]  I. Fuss,et al.  Quantum Reed-Muller codes , 1997, quant-ph/9703045.

[41]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[42]  Hideki Imai,et al.  Quantum Error Correction Beyond the Bounded Distance Decoding Limit , 2010, IEEE Transactions on Information Theory.

[43]  T. Beth,et al.  Codes for the quantum erasure channel , 1996, quant-ph/9610042.

[44]  Reginaldo Palazzo Júnior,et al.  A concatenated [(4, 1, 3)] quantum convolutional code , 2004, Information Theory Workshop.

[45]  A Retzker,et al.  Increasing sensing resolution with error correction. , 2013, Physical review letters.

[46]  Gottesman Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[47]  Mark M. Wilde,et al.  Recursive Quantum Convolutional Encoders are Catastrophic: A Simple Proof , 2012, IEEE Transactions on Information Theory.

[48]  David Poulin,et al.  Quantum serial turbo codes , 2009, IEEE Trans. Inf. Theory.

[49]  Jean-Pierre Tillich,et al.  Description of a quantum convolutional code. , 2003, Physical review letters.

[50]  P. Dirac Principles of Quantum Mechanics , 1982 .

[51]  Michael S. Postol A Proposed Quantum Low Density Parity Check Code , 2001, quant-ph/0108131.

[52]  Hideki Imai,et al.  Quantum Quasi-Cyclic LDPC Codes , 2007, 2007 IEEE International Symposium on Information Theory.

[53]  T. H. Liew,et al.  Turbo Coding, Turbo Equalisation and Space-Time Coding: EXIT-Chart-Aided Near-Capacity Designs for Wireless Channels , 2011 .

[54]  M. Wilde Quantum Information Theory: Noisy Quantum Shannon Theory , 2013 .

[55]  Stephen Wiesner,et al.  Conjugate coding , 1983, SIGA.

[56]  Pradeep Kiran Sarvepalli,et al.  Quantum Convolutional Codes Derived from Generalized Reed-Solomon Codes , 2007, 2007 IEEE International Symposium on Information Theory.

[57]  Mark M. Wilde,et al.  Dualities and identities for entanglement-assisted quantum codes , 2010, Quantum Information Processing.

[58]  Luigi Frunzio,et al.  Realization of three-qubit quantum error correction with superconducting circuits , 2011, Nature.

[59]  A. Grant,et al.  Convergence of non-binary iterative decoding , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[60]  David Poulin,et al.  On the iterative decoding of sparse quantum codes , 2008, Quantum Inf. Comput..

[61]  Lajos Hanzo,et al.  Fixed-Complexity Quantum-Assisted Multi-User Detection for CDMA and SDMA , 2014, IEEE Transactions on Communications.

[62]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[63]  Sandor Imre,et al.  Quantum Computing and Communications: An Engineering Approach , 2005 .

[64]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[65]  Zunaira Babar,et al.  Entanglement-Assisted Quantum Turbo Codes , 2010, IEEE Transactions on Information Theory.

[66]  M. Tuchler,et al.  Design of serially concatenated systems depending on the block length , 2004, IEEE Transactions on Communications.

[67]  Hideki Imai,et al.  Non-binary quasi-cyclic quantum LDPC codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[68]  Baoming Bai,et al.  Enhanced Feedback Iterative Decoding of Sparse Quantum Codes , 2009, IEEE Transactions on Information Theory.

[69]  Debbie W. Leung,et al.  Quantum data hiding , 2002, IEEE Trans. Inf. Theory.

[70]  Igor Devetak The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.

[71]  Ivan B. Djordjevic,et al.  Quantum LDPC Codes from Balanced Incomplete Block Designs , 2008, IEEE Communications Letters.

[72]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[73]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[74]  R. Schumann Quantum Information Theory , 2000, quant-ph/0010060.

[75]  H. F. Chau Good quantum-convolutional error-correction codes and their decoding algorithm exist , 1999 .

[76]  Philippe Piret,et al.  Convolutional Codes: An Algebraic Approach , 1988 .

[77]  Robert A. Malaney,et al.  Location-dependent communications using quantum entanglement , 2010, 1003.0949.

[78]  Andrew M. Steane Enlargement of Calderbank-Shor-Steane quantum codes , 1999, IEEE Trans. Inf. Theory.

[79]  Yonghui Li,et al.  Transactions Papers Near-Capacity Turbo Trellis Coded Modulation Design Based on EXIT Charts and Union Bounds , 2008 .

[80]  Joseph M Renes,et al.  Efficient polar coding of quantum information. , 2011, Physical review letters.

[81]  Markus Grassl,et al.  Quantum Reed-Solomon Codes , 1999, AAECC.

[82]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[83]  Michael Tüchler,et al.  Design of Serially Concatenated Systems Depending on the Block Length , 2004, IEEE Trans. Commun..

[84]  J. Garcia-Frías,et al.  On the Application of Error-Correcting Codes with Low-Density Generator Matrix over Different Quantum Channels , 2006 .

[85]  Stephan ten Brink,et al.  Convergence behavior of iteratively decoded parallel concatenated codes , 2001, IEEE Trans. Commun..

[86]  Igor Devetak,et al.  General entanglement-assisted quantum error-correcting codes , 2007, 2007 IEEE International Symposium on Information Theory.

[87]  Garry Bowen Entanglement required in achieving entanglement-assisted channel capacities , 2002 .

[88]  Mark M. Wilde,et al.  Entanglement boosts quantum turbo codes , 2011, ISIT.

[89]  B. L. Yeap,et al.  Turbo Coding, Turbo Equalisation and Space-Time Coding , 2002 .

[90]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[91]  I. Devetak,et al.  Entanglement-assisted quantum quasicyclic low-density parity-check codes , 2008, 0803.0100.

[92]  K. Boström,et al.  Deterministic secure direct communication using entanglement. , 2002, Physical review letters.

[93]  Hideki Imai,et al.  Spatially coupled quasi-cyclic quantum LDPC codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[94]  Lajos Hanzo,et al.  Efficient Computation of EXIT Functions for Nonbinary Iterative Decoding , 2006, IEEE Transactions on Communications.

[95]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[96]  Nicolas Delfosse,et al.  Tradeoffs for reliable quantum information storage in surface codes and color codes , 2013, 2013 IEEE International Symposium on Information Theory.

[97]  Christian Kurtsiefer,et al.  LETTER TO THE EDITOR: Secure communication with single-photon two-qubit states , 2001 .

[98]  Jean-Pierre Tillich,et al.  A class of quantum LDPC codes: construction and performances under iterative decoding , 2007, 2007 IEEE International Symposium on Information Theory.

[99]  Jing Li,et al.  Efficient Quantum Stabilizer Codes: LDPC and LDPC-Convolutional Constructions , 2010, IEEE Transactions on Information Theory.

[100]  Igor Devetak,et al.  Correcting Quantum Errors with Entanglement , 2006, Science.

[101]  Wang Yun-jiang,et al.  Feedback iterative decoding of sparse quantum codes , 2010 .

[102]  Saikat Guha,et al.  Simple rate-1/3 convolutional and tail-biting quantum error-correcting codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[103]  I. Devetak,et al.  General entanglement-assisted quantum error-correcting codes , 2007, 2007 IEEE International Symposium on Information Theory.

[104]  B. Moor,et al.  Clifford group, stabilizer states, and linear and quadratic operations over GF(2) , 2003, quant-ph/0304125.

[105]  Lajos Hanzo,et al.  Quantum-Assisted Routing Optimization for Self-Organizing Networks , 2014, IEEE Access.

[106]  H. Ollivier,et al.  Quantum convolutional codes: fundamentals , 2004 .

[107]  L. Brown Dirac ’ s The Principles of Quantum Mechanics * , 2006 .

[108]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[109]  Laflamme,et al.  Perfect Quantum Error Correcting Code. , 1996, Physical review letters.

[110]  S. Brink Rate one-half code for approaching the Shannon limit by 0.1 dB , 2000 .

[111]  Dominic C. O'Brien,et al.  Wireless Myths, Realities, and Futures: From 3G/4G to Optical and Quantum Wireless , 2012, Proceedings of the IEEE.

[112]  David J. C. MacKay More Sparse-Graph Codes for Quantum Error-Correction , 2007 .

[113]  David Poulin,et al.  Quantum Serial Turbo Codes , 2009, IEEE Transactions on Information Theory.

[114]  J. Smolin,et al.  Degenerate quantum codes for Pauli channels. , 2006, Physical review letters.

[115]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[116]  Eric M. Rains Nonbinary quantum codes , 1999, IEEE Trans. Inf. Theory.

[117]  J. Preskill Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[118]  M. Bredig,et al.  The Born-Einstein Letters , 1973, Science.

[119]  J. Tillich,et al.  Constructions and performance of classes of quantum LDPC codes , 2005, quant-ph/0502086.

[120]  S. Lloyd Capacity of the noisy quantum channel , 1996, quant-ph/9604015.

[121]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[122]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[123]  H. F. Chau Quantum Convolutional Error Correction Codes , 1998, QCQC.

[124]  L. Pryadko,et al.  Quantum Kronecker sum-product low-density parity-check codes with finite rate , 2012, 1212.6703.

[125]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[126]  David Poulin,et al.  Degenerate Viterbi Decoding , 2012, IEEE Transactions on Information Theory.