Large Water‐Soluble Cyclophanes with Convergent Intracavity Functionality

New tricyclic spacers, readily available through fourfold Mannich reaction of substituted dibenzyl ketones, were introduced into a series of ten H2O-soluble cyclophanes with spacious preorganized cavity binding sites. These spacers provide H2O-solubility with amine or crown-ether functionality remote from the cyclophane cavity while directing functional groups such as keto or OH groups in a precise geometrical array inside the cavity. The cyclophanes were designed to include organic substrates via a combination of apolar and specific polar functional group interactions. The X-ray crystal-structure analysis of the tritopic receptor 18 with one potential neutral-molecule and two cation-binding sites showed a large rectangular open cavity with dimensions of roughly 9 × 14 A and a spacing of 9.7 A between the O-atoms of two convergent CO groups. Despite the binding-site preorganization, cyclophanes incorporating two of the new spacers did not show any substrate binding in aqueous solutions. The failure of these systems to function as receptors is mainly due to steric hindrance to important cyclophane aromatic ring-guest interactions. Also, the favorable solvation of the intracavity functionality may prevent the formation of complexes. Hybrid receptors constructed from the novel spacers and diphenylmethane units were found to bind flat aromatic substrates as well as bulky [4.2]paracyclophanes. The observed large differences in stability (ΔΔG°> 2 kcal mol−1) of the complexes formed by three structurally closely related hybrid receptors with convergent CO, OH or CH2 groups and 6-hydroxynaphthalene-2-carbonitrile as guest can be explained by a strong solvation effect of the convergent functional groups on apolar inclusion complexation.

[1]  L. Garel,et al.  Remarkable effect of the receptor size in the binding of acetylcholine and related ammonium ions to water-soluble cryptophanes , 1993 .

[2]  J. Forman,et al.  Molecular recognition in aqueous media. New binding studies provide further insights into the cation-π interaction and related phenomena , 1993 .

[3]  F. Diederich,et al.  Catalytic Cyclophanes. Part IX. A Thiazolio‐cyclophane as Model for Pyruvate Oxidase and One‐Pot Synthesis of Aromatic Esters by Electrochemical Oxidation of Aldehydes Mediated by Bis(coenzyme) Catalysis , 1993 .

[4]  K. Cammann,et al.  all-Homocalixarene: Carbocyclische Wirtverbindungen mit intra- und extraannularen Ligandarmen , 1993 .

[5]  D. Cram,et al.  Host-guest complexation. 65. Hemicarcerands that encapsulate hydrocarbons with molecular weights greater than two hundred , 1993 .

[6]  C. Vicent,et al.  Glycophanes, cyclodextrin-cyclophane hybrid receptors for apolar binding in aqueous solutions. A stereoselective carbohydrate-carbohydrate interaction in water , 1993 .

[7]  P. Stang,et al.  Preparation and characterization of a macrocyclic tetraaryltetraiodonium compound, cyclo(Ar4I4)4+.cntdot.4X-. A unique, charged, cationic molecular box , 1993 .

[8]  Harry L. Anderson,et al.  Expanding roles for templates in synthesis , 1993 .

[9]  F. Diederich,et al.  Catalytic Cyclophanes. Part VIII. Cytochrome P‐450 activity of a porphyrin‐bridged cyclophane , 1993 .

[10]  Laurent Garel,et al.  Komplexierung von Methan und Fluorchlorkohlen‐wasserstoffen durch Cryptophan‐A in organischer Lösung , 1993 .

[11]  L. Garel,et al.  Complexation of Methane and Chlorofluorocarbons by Cryptophane‐A in Organic Solution , 1993 .

[12]  K. Koga,et al.  Biomimetic Studies Using Artificial Systems. VI. Design and Synthesis of Novel Cyclophanes Having Eight Carboxyl Groups on the Aromatic Rings , 1993 .

[13]  A. Schwabacher,et al.  Directionality of the cation-.pi. effect: a charge-mediated size selectivity in binding , 1993 .

[14]  Y. Ohba,et al.  Synthesis and inclusion properties of teraazametacyclophanes containing bisphenol A unit , 1993 .

[15]  F. Vögtle,et al.  Maßgeschneiderte Wirtverbindung für Piperazin und verwandte Amine , 1993 .

[16]  J. Sanders,et al.  Self-associating cyclocholates , 1993 .

[17]  T. H. Webb,et al.  Selectivity in molecular recognition of steroids, alkanes and alicyclic substrates in aqueous media , 1993 .

[18]  A. P. Davis,et al.  Cholaphanes et al.; steroids as structural components in molecular engineering , 1993 .

[19]  V. Rotello,et al.  Molecular recognition in water : new receptors for adenine derivatives , 1993 .

[20]  Y. Aoyama,et al.  Complexation of hydrophobic sugars and nucleosides in water with tetrasulfonate derivatives of resorcinol cyclic tetramer having a polyhydroxy aromatic cavity: importance of guest-host CH-.pi. interaction , 1992 .

[21]  K. Koga,et al.  A NOVEL WATER-SOLUBLE CYCLOPHANE AS A HOST FOR CATIONIC, ANIONIC, AND NEUTRAL AROMATIC GUESTS , 1992 .

[22]  F. Vögtle,et al.  Molecules with Large Cavities in Supramolecular Chemistry , 1992 .

[23]  Christian Seel,et al.  Moleküle mit großen Hohlräumen in der supramolekularen Chemie , 1992 .

[24]  H. Whitlock,et al.  pi. Hydrogen bonds as a design principal in molecular recognition , 1992 .

[25]  F. Diederich,et al.  Water-soluble cyclophane receptors with convergent functional groups , 1992 .

[26]  J. Evanseck,et al.  Solvent effects in molecular recognition , 1992 .

[27]  Hans-Jörg Schneider,et al.  Mechanisms of Molecular Recognition : Investigations of Organic Host–Guest Complexes , 1991 .

[28]  H. Schneider Mechanismen der molekularen Erkennung : Untersuchungen an organischen Wirt-Gast-Komplexen , 1991 .

[29]  V. Balzani,et al.  Endoreceptors with Convergent Phenanthroline Units: A Molecular Cavity for Six Guest Molecules , 1991 .

[30]  F. Vögtle,et al.  Endorezeptoren mit konvergenten Phenanthrolin‐Einheiten: ein Hohlraum für sechs Gastmoleküle , 1991 .

[31]  T. H. Webb,et al.  Chemistry of synthetic receptors and functional group arrays. 16. Enantioselective and diastereoselective molecular recognition of alicyclic substrates in aqueous media by a chiral, resolved synthetic receptor , 1991 .

[32]  J. Snyder,et al.  Syntheses of Macrocyclic Enzyme Models. 8. ∠ Conformational Mobility and Molecular Recognition by the Internal Cage of Kyuphane , 1991 .

[33]  F. Diederich,et al.  Cyclophane-arene inclusion complexation in protic solvents: solvent effects versus electron donor-acceptor interactions , 1991 .

[34]  C. Knobler,et al.  Porphyrin-cyclophanes : inclusion complexation and X-ray crystal structure of a zinc octamethyldiphenylporphyrin , 1991 .

[35]  A. Hamilton Synthetic Studies on Molecular Recognition , 1991 .

[36]  François Diederich,et al.  Ein großräumiger Cyclophan‐Wirt zur Einschlußkomplexierung von Steroiden und [m.n]Paracyclophanen , 1990 .

[37]  Julius Rebek Molekulare Erkennung mit konkaven Modellverbindungen , 1990 .

[38]  J. Rebek Molecular Recognition with Model Systems , 1990 .

[39]  Julian L. Roberts,et al.  Hydroxide ion: an effective one-electron reducing agent? , 1988 .

[40]  F. Diederich,et al.  Complexation of Neutral Molecules by Cyclophane Hosts , 1988 .

[41]  François Diederich Cyclophane zur Komplexierung von Neutralmolekülen , 1988 .

[42]  Tadashi. Sasaki,et al.  Heterocage compounds. IV. Through-sigma-bond interaction of .beta.-amino Ketone moiety in 1,3-diazaadamantan-6-one and 3,6-diazahomoadamantan-9-one systems. Structure and reactivity , 1973 .

[43]  S. Svensson,et al.  Macrocyclic Oligo-ethers Related to Ethylene Oxide. , 1972 .

[44]  H. Stetter,et al.  Über Verbindungen mit Urotropin‐Struktur, X. Über die Bildung des 1.3‐Diaza‐adamantan‐Ringsystems durch Mannich‐Kondensation , 1958 .