The E3 ligase parkin maintains mitochondrial integrity by increasing linear ubiquitination of NEMO.

[1]  Michael Lazarou,et al.  PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding , 2013, The Journal of cell biology.

[2]  P. Bastiaens,et al.  Fluorescence-based sensors to monitor localization and functions of linear and K63-linked ubiquitin chains in cells. , 2012, Molecular cell.

[3]  T. Sixma,et al.  The E3 ligase HOIP specifies linear ubiquitin chain assembly through its RING-IBR-RING domain and the unique LDD extension , 2012, The EMBO journal.

[4]  Christian Haass,et al.  Mitochondrial dysfunction in Parkinson's disease: molecular mechanisms and pathophysiological consequences , 2012, The EMBO journal.

[5]  K. Rittinger,et al.  LUBAC synthesizes linear ubiquitin chains via a thioester intermediate , 2012, EMBO reports.

[6]  K. Iwai Diverse ubiquitin signaling in NF-κB activation. , 2012, Trends in cell biology.

[7]  K. Iwai,et al.  LUBAC regulates NF‐κB activation upon genotoxic stress by promoting linear ubiquitination of NEMO , 2011, The EMBO journal.

[8]  M. Schmidt-Supprian,et al.  NF-κB Essential Modulator (NEMO) Interaction with Linear and Lys-63 Ubiquitin Chains Contributes to NF-κB Activation* , 2011, The Journal of Biological Chemistry.

[9]  Rachel E. Klevit,et al.  UbcH7 reactivity profile reveals Parkin and HHARI to be RING/HECT hybrids , 2011, Nature.

[10]  David S. Park,et al.  Parkin is transcriptionally regulated by ATF4: evidence for an interconnection between mitochondrial stress and ER stress , 2011, Cell Death and Differentiation.

[11]  Anthony W. Purcell,et al.  Linear ubiquitination prevents inflammation and regulates immune signalling , 2011, Nature.

[12]  B. Maček,et al.  SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis , 2011, Nature.

[13]  Y. Saeki,et al.  SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex , 2011, Nature.

[14]  T. Dawson,et al.  PARIS (ZNF746) Repression of PGC-1α Contributes to Neurodegeneration in Parkinson's Disease , 2011, Cell.

[15]  E. Kremmer,et al.  ADAM10 is the physiologically relevant, constitutive α‐secretase of the amyloid precursor protein in primary neurons , 2010, The EMBO journal.

[16]  Fabienne C. Fiesel,et al.  PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1 , 2010, Nature Cell Biology.

[17]  T. Dawson,et al.  The role of parkin in familial and sporadic Parkinson's disease , 2010, Movement disorders : official journal of the Movement Disorder Society.

[18]  Ted M. Dawson,et al.  PINK1-dependent recruitment of Parkin to mitochondria in mitophagy , 2009, Proceedings of the National Academy of Sciences.

[19]  Christoph H Emmerich,et al.  Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. , 2009, Molecular cell.

[20]  Wolfgang Wurst,et al.  Loss of Parkin or PINK1 Function Increases Drp1-dependent Mitochondrial Fragmentation* , 2009, The Journal of Biological Chemistry.

[21]  David Komander,et al.  Molecular discrimination of structurally equivalent Lys 63‐linked and linear polyubiquitin chains , 2009, EMBO reports.

[22]  Nobuhiro Suzuki,et al.  Specific Recognition of Linear Ubiquitin Chains by NEMO Is Important for NF-κB Activation , 2009, Cell.

[23]  S. Akira,et al.  Involvement of linear polyubiquitylation of NEMO in NF-κB activation , 2009, Nature Cell Biology.

[24]  R. Youle,et al.  Parkin is recruited selectively to impaired mitochondria and promotes their autophagy , 2008, The Journal of cell biology.

[25]  M. Goldberg,et al.  Parkin Deficiency Increases Vulnerability to Inflammation-Related Nigral Degeneration , 2008, The Journal of Neuroscience.

[26]  K. Winklhofer,et al.  Aberrant Folding of Pathogenic Parkin Mutants , 2008, Journal of Biological Chemistry.

[27]  J. Sundberg,et al.  Spontaneous mutations in the mouse Sharpin gene result in multiorgan inflammation, immune system dysregulation and dermatitis , 2007, Genes and Immunity.

[28]  C. Culmsee,et al.  Parkin Mediates Neuroprotection through Activation of IκB Kinase/Nuclear Factor-κB Signaling , 2007, The Journal of Neuroscience.

[29]  C. Culmsee,et al.  Parkin mediates neuroprotection through activation of IkappaB kinase/nuclear factor-kappaB signaling. , 2007, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  Keiji Tanaka,et al.  A ubiquitin ligase complex assembles linear polyubiquitin chains , 2006, The EMBO journal.

[31]  Sara Cipolat,et al.  OPA1 Controls Apoptotic Cristae Remodeling Independently from Mitochondrial Fusion , 2006, Cell.

[32]  Thomas Werner,et al.  MatInspector and beyond: promoter analysis based on transcription factor binding sites , 2005, Bioinform..

[33]  P. Lackner,et al.  Pathogenic mutations inactivate parkin by distinct mechanisms , 2005, Journal of neurochemistry.

[34]  K. Winklhofer,et al.  Inactivation of Parkin by Oxidative Stress and C-terminal Truncations , 2003, Journal of Biological Chemistry.

[35]  G. Lenaers,et al.  Loss of OPA1 Perturbates the Mitochondrial Inner Membrane Structure and Integrity, Leading to Cytochrome c Release and Apoptosis* , 2003, The Journal of Biological Chemistry.

[36]  E. Hirsch,et al.  Parkin prevents mitochondrial swelling and cytochrome c release in mitochondria-dependent cell death. , 2003, Human molecular genetics.

[37]  David Baltimore,et al.  Germline Transmission and Tissue-Specific Expression of Transgenes Delivered by Lentiviral Vectors , 2002, Science.

[38]  C. Ross,et al.  Parkin ubiquitinates the α-synuclein–interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease , 2001, Nature Medicine.

[39]  Klaus Rajewsky,et al.  NEMO/IKKγ-Deficient Mice Model Incontinentia Pigmenti , 2000 .

[40]  V. Godfrey,et al.  Female mice heterozygous for IKK gamma/NEMO deficiencies develop a dermatopathy similar to the human X-linked disorder incontinentia pigmenti. , 2000, Molecular cell.

[41]  G. Courtois,et al.  NEMO/IKK gamma-deficient mice model incontinentia pigmenti. , 2000, Molecular cell.

[42]  S. Minoshima,et al.  Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism , 1998, Nature.

[43]  E. Zandi,et al.  The IκB Kinase Complex (IKK) Contains Two Kinase Subunits, IKKα and IKKβ, Necessary for IκB Phosphorylation and NF-κB Activation , 1997, Cell.