Rate Coding Versus Temporal Order Coding: What the Retinal Ganglion Cells Tell the Visual Cortex

It is often supposed that the messages sent to the visual cortex by the retinal ganglion cells are encoded by the mean firing rates observed on spike trains generated with a Poisson process. Using an information transmission approach, we evaluate the performances of two such codes, one based on the spike count and the other on the mean interspike interval, and compare the results with a rank order code, where the first ganglion cells to emit a spike are given a maximal weight. Our results show that the rate codes are far from optimal for fast information transmission and that the temporal structure of the spike train can be efficiently used to maximize the information transfer rate under conditions where each cell needs to fire only one spike.

[1]  Hideo Hasegawa,et al.  Dynamical mean-field theory of spiking neuron ensembles: response to a single spike with independent noises. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Michael J. Berry,et al.  The Neural Code of the Retina , 1999, Neuron.

[3]  D. Mastronarde Correlated firing of retinal ganglion cells , 1989, Trends in Neurosciences.

[4]  Iman H. Brivanlou,et al.  Mechanisms of Concerted Firing among Retinal Ganglion Cells , 1998, Neuron.

[5]  Arnaud Delorme,et al.  Spike-based strategies for rapid processing , 2001, Neural Networks.

[6]  David J. Field,et al.  What Is the Goal of Sensory Coding? , 1994, Neural Computation.

[7]  L. Abbott,et al.  Synaptic Depression and Cortical Gain Control , 1997, Science.

[8]  M. Diamond,et al.  Population Coding of Stimulus Location in Rat Somatosensory Cortex , 2001, Neuron.

[9]  Robert G. Smith,et al.  The AII Amacrine Network: Coupling can Increase Correlated Activity , 1996, Vision Research.

[10]  Ch. Godin,et al.  SpikeCell: a deterministic spiking neuron , 2002, Neural Networks.

[11]  J Gautrais,et al.  Rate coding versus temporal order coding: a theoretical approach. , 1998, Bio Systems.

[12]  R VanRullen,et al.  Is it a Bird? Is it a Plane? Ultra-Rapid Visual Categorisation of Natural and Artifactual Objects , 2001, Perception.

[13]  Jacques Gautrais,et al.  SpikeNET: A simulator for modeling large networks of integrate and fire neurons , 1999, Neurocomputing.

[14]  K. Kratz,et al.  Visual latency of ganglion X- and Y-cells: A comparison with geniculate X- and Y-cells , 1987, Vision Research.

[15]  Hiroko M. Sakai,et al.  The messages in optic nerve fibers and their interpretation , 1991, Brain Research Reviews.

[16]  W. Singer,et al.  Temporal coding in the visual cortex: new vistas on integration in the nervous system , 1992, Trends in Neurosciences.

[17]  R. Lestienne Spike timing, synchronization and information processing on the sensory side of the central nervous system , 2001, Progress in Neurobiology.

[18]  L. Abbott,et al.  Responses of neurons in primary and inferior temporal visual cortices to natural scenes , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[19]  Jacques Gautrais,et al.  Rapid Visual Processing using Spike Asynchrony , 1996, NIPS.

[20]  Michael J. Berry,et al.  Anticipation of moving stimuli by the retina , 1999, Nature.

[21]  B J Richmond,et al.  Temporal encoding of two-dimensional patterns by single units in primate primary visual cortex. II. Information transmission. , 1990, Journal of neurophysiology.

[22]  J. Victor,et al.  Nature and precision of temporal coding in visual cortex: a metric-space analysis. , 1996, Journal of neurophysiology.

[23]  Stefano Panzeri,et al.  On Decoding the Responses of a Population of Neurons from Short Time Windows , 1999, Neural Computation.

[24]  S. Thorpe,et al.  Dynamics of orientation coding in area V1 of the awake primate , 1993, Visual Neuroscience.

[25]  D. Baylor,et al.  Concerted Signaling by Retinal Ganglion Cells , 1995, Science.

[26]  William R. Softky,et al.  Simple codes versus efficient codes , 1995, Current Opinion in Neurobiology.

[27]  T. Sejnowski,et al.  Reliability of spike timing in neocortical neurons. , 1995, Science.

[28]  Michael J. Berry,et al.  The structure and precision of retinal spike trains. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Kiyohiko Nakamura Neural Processing in the Subsecond Time Range in the Temporal Cortex , 1998, Neural Computation.

[30]  S. Thorpe,et al.  Rapid categorization of natural images by rhesus monkeys , 1998, Neuroreport.

[31]  B. Knight,et al.  Response variability and timing precision of neuronal spike trains in vivo. , 1997, Journal of neurophysiology.

[32]  D. Perrett,et al.  Time course of neural responses discriminating different views of the face and head. , 1992, Journal of neurophysiology.

[33]  G B Stanley,et al.  Reconstruction of Natural Scenes from Ensemble Responses in the Lateral Geniculate Nucleus , 1999, The Journal of Neuroscience.

[34]  B. Knight,et al.  The Power Ratio and the Interval Map: Spiking Models and Extracellular Recordings , 1998, The Journal of Neuroscience.

[35]  R. W. Rodieck Quantitative analysis of cat retinal ganglion cell response to visual stimuli. , 1965, Vision research.

[36]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  R. Reid,et al.  Precisely correlated firing in cells of the lateral geniculate nucleus , 1996, Nature.

[38]  Denis Fize,et al.  Speed of processing in the human visual system , 1996, Nature.

[39]  W. Newsome,et al.  The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding , 1998, The Journal of Neuroscience.

[40]  K. Naka,et al.  S‐potentials from luminosity units in the retina of fish (Cyprinidae) , 1966, The Journal of physiology.

[41]  R. Eckhorn,et al.  Oscillatory and non-oscillatory synchronizations in the visual cortex and their possible roles in associations of visual features. , 1994, Progress in brain research.

[42]  D. Hubel,et al.  Microsaccadic eye movements and firing of single cells in the striate cortex of macaque monkeys , 2000, Nature Neuroscience.

[43]  Hideo Hasegawa,et al.  Stochastic resonance of ensemble neurons for transient spike trains: wavelet analysis. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  Christof Koch,et al.  Temporal Precision of Spike Trains in Extrastriate Cortex of the Behaving Macaque Monkey , 1999, Neural Computation.

[45]  Michael J. Berry,et al.  Adaptation of retinal processing to image contrast and spatial scale , 1997, Nature.

[46]  W. Bair Spike timing in the mammalian visual system , 1999, Current Opinion in Neurobiology.

[47]  J. Molenaar,et al.  The spike generating mechanism of cat retinal ganglion cells , 1989, Vision Research.

[48]  C. Curcio,et al.  Topography of ganglion cells in human retina , 1990, The Journal of comparative neurology.

[49]  H. Wässle,et al.  Size, scatter and coverage of ganglion cell receptive field centres in the cat retina. , 1979, The Journal of physiology.

[50]  Leo E. Lipetz,et al.  The Relation of Physiological and Psychological Aspects of Sensory Intensity , 1971 .

[51]  Wolf Singer,et al.  Time as coding space? , 1999, Current Opinion in Neurobiology.

[52]  P. Latham,et al.  Population coding in the retina , 1998, Current Opinion in Neurobiology.

[53]  J. Bullier,et al.  Visual latencies in areas V1 and V2 of the macaque monkey , 1995, Visual Neuroscience.

[54]  S. Thorpe,et al.  Surfing a spike wave down the ventral stream , 2002, Vision Research.

[55]  Michael J. Berry,et al.  Refractoriness and Neural Precision , 1997, The Journal of Neuroscience.

[56]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[57]  Simon J. Thorpe,et al.  Spike arrival times: A highly efficient coding scheme for neural networks , 1990 .

[58]  B. B. Lee,et al.  Visual resolution of macaque retinal ganglion cells. , 1988, The Journal of physiology.

[59]  Thomas Nowotny,et al.  Spatial representation of temporal information through spike-timing-dependent plasticity. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  R. W. Rodieck The First Steps in Seeing , 1998 .

[61]  L. Croner,et al.  Receptive fields of P and M ganglion cells across the primate retina , 1995, Vision Research.

[62]  H. Markram,et al.  Redistribution of synaptic efficacy between neocortical pyramidal neurons , 1996, Nature.

[63]  B. Fischer Overlap of receptive field centers and representation of the visual field in the cat's optic tract. , 1973, Vision research.

[64]  K. Kratz,et al.  Relationship between response latency and amplitude for ganglion and geniculate X- and Y-cells in the cat. , 1991, The International journal of neuroscience.

[65]  Y. Dan,et al.  Coding of visual information by precisely correlated spikes in the lateral geniculate nucleus , 1998, Nature Neuroscience.

[66]  R Van Rullen,et al.  Face processing using one spike per neurone. , 1998, Bio Systems.

[67]  Pamela Reinagel,et al.  Decoding visual information from a population of retinal ganglion cells. , 1997, Journal of neurophysiology.

[68]  M. Diamond,et al.  The role of individual spikes and spike patterns in population coding of stimulus location in rat somatosensory cortex. , 2002, Bio Systems.

[69]  S. DeVries Correlated firing in rabbit retinal ganglion cells. , 1999, Journal of neurophysiology.

[70]  T E Spraker,et al.  Cross‐correlation analysis of the maintained discharge of rabbit retinal ganglion cells. , 1981, The Journal of physiology.